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Foreword

While many empirical studies over the years have shown that software development
skills and aptitude vary between individuals, the reality is that the size, complex-
ity and longevity of software development projects and artefacts far exceed what
any individual software developer can manage on her own. Collaboration among
individuals — from users to developers — is therefore central to modern day soft-
ware engineering. Collaboration takes many forms: joint activity to solve common
problems, complementary activity to solve diverse problems, and both social and
technical perspectives impacting all software development activity.

The difficulties of collaboration are also well documented. For example, when
managerial instinct in dealing with a problematic software project was to add more
developers to the development team, Fred Brooks observed and argued in his clas-
sic book The Mythical Man Month (Addison-Wesley, 1975) that such additions
impaired rather than speeded up development. Reflecting on Brooks’ observation,
one could argue that it is not the addition of developers per se that is problematic,
but the lack of effective means by which they are able to collaborate effectively that
is crucial. Indeed the grand challenge of effective collaboration is not only to ensure
that developers in a team deliver effectively as individuals, but that the whole team
delivers more than the sum of its parts.

Enabling effective collaboration of course is easier said than done. As this book
shows, there are many dimensions of collaboration, and many different develop-
ment contexts in which different forms of collaboration are necessary and effective.
The many tools and techniques that work in one context may not work in another.
Collaborative software engineering therefore provides a fertile ground for empirical
research on collaborative practices and collaboration tools, for technology research
on developing tools and techniques for supporting collaboration, and operational
research to understand organisational structures, processes, and experiences that
impact, or are impacted by collaboration. This book is a welcome contribution to
the research discourse in all these areas of study.

As a doctoral student some 20 years ago, I was very interested in understanding
and supporting multiple software development stakeholders, as they articulated their
differing perspectives of software problems and solutions, developed some shared
understanding of their problem and solution worlds, and crucially important in my
view,-as.they.agreed to disagree about the parts of the world where their perspectives
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differed. Acknowledging, understanding and tackling disagreements head on was
and is, in my view, fundamental to effective collaboration, and remains at the heart
of collaborative software engineering research. While much progress has been made
in the area of conflict management research, I believe that it remains a key area for
tackling the challenges of supporting effective collaborative software engineering.

The editors of this book have assembled an impressive selection of authors, who
have contributed authoritative body of work tackling a wide range of issues in the
field of collaborative software engineering. The book will be of tremendous value to
practitioners grappling with managing multi-person software development activity,
as well as researchers and students interested in the state-of-the-art and the many
research directions in this area. The volume is not simply a collection of papers,
but a thoughtful assembly of contributions, suitably structured and introduced by
the editorial team. Many of the chapters reflect on a body of research and practice
that spans many years gone past, while other chapters pose research questions and
describe research problems that are fundamental and long-standing. The result is a
reference book, a research resource, and a pleasurable read.

Milton Keynes, UK Bashar Nuseibeh
June 2009




Preface

Software engineering is almost always a collaborative activity. This book brings
together a number of recent contributions to the domain of Collaborative Software
Engineering (CoSE) from a range of research groups and practitioners. These range
from tools and techniques for managing discrete, low-level activities developers
engage in when developing parts of software systems; knowledge, project and pro-
cess management for large scale collaborative software engineering enterprises;
and new ways of organizing software teams including outsourcing, open sourcing,
highly distributed virtual teams and global software engineering. We believe that all
practitioners engaging in or managing collaborative software engineering practices,
researchers contributing to advancement of our understanding and support for col-
laborative software engineering, and students wishing to gain a deeper appreciation
of the underpinning theories, issues and practices within this domain will benefit
from most if not all of these contributions.

Introduction

Ever since people began to create software there has been a need for collaborative
software engineering. At some point people need to share their code and designs
with others. Software frequently grows large and complex, thus requiring a team
of multi-talented experts to work together to tackle the project. Such a team must
adopt suitable processes and project management to ensure the myriad of tasks are
completed; to keep track of what each other is doing; and to ensure the project
advances on-time, on-budget and with the software meeting appropriate quality lev-
els. The team must share both low-level artifacts and higher-level knowledge in
controlled, consistent ways, be proactively informed of changes others make, and
co-ordinate their work “in the small” as well as “in the large”. Various studies have
demonstrated that peer review of designs and code improve them, leading to collab-
orative testing and quality assurance practices. Recent trends have moved software
across organizational and country boundaries, including virtual software teams and
open source software development. Agile methods have brought bottom-up, human-
oriented processes and techniques to bear that are very different from traditional,
centralized and hierarchical development practices.

vii
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Our understanding of and support for collaborative software engineering has
advanced tremendously over the past forty years. We understand that team formation
and management is not a straightforward task. However we are still learning about
formation, management and evolution in domains such as agile teams, projects with
substantive outsourcing, open source software, virtual software teams and global
software engineering domains. Knowledge management is critical in software engi-
neering and we have developed as a community many approaches to representing
knowledge about software as well as tools to facilitate its capture. However, shared,
evolving knowledge and appropriate tools and techniques to support this is less well-
understood from both theoretic and practical standpoints. How do we best represent
and collaboratively manage knowledge about requirements, architecture, designs,
quality assurance measures and software processes themselves? Social influences
on software engineering and teams have become more important as have organi-
zational implications. How do team members relate to one other and how to we
build effective team relationships for communication, co-ordination and collabora-
tion? How do we set up a successful multi-site software project? A successful open
source project? A successful outsourcing project?

The actual act of collaborative software creation has received much attention over
many years. But what are the right sets of tools and work practices to deploy on
a collaborative software engineering project to best-support engineers and ensure
quality? What are the unsolved issues around co-ordination especially in large
or highly distributed teams? Configuration management remains one of the most
challenging activities in collaborative software engineering.

Book Overview

We have divided this book into four parts, with a general editorial chapter provid-
ing a more detailed review of the domain of collaborative software engineering.
We received a large number of submissions in response to our call for papers and
invitations for this edited book from many leading research groups and well-known
practitioners of leading collaborative software engineering techniques. After a rig-
orous review process 17 submissions were accepted for this publication. We begin
by a review of the concept of collaborative software engineering including a brief
review of its history, key fundamental challenges, conceptual models for reason-
ing about collaboration in software engineering, technical, social and managerial
considerations, and define the main issues in collaborative software engineering.

Part I contains five chapters that characterize collaborative software engineer-
ing. This includes characterizing global software engineering via a process-centric
approach, requirements-driven collaboration using requirements/people relation-
ships, decoupling in collaborative software engineering, agile software development
and co-ordination, communication and collaboration, and applying the concept of
ontologies to collaborative software engineering.

Part II contains five chapters that examine various techniques and tool sup-
port issues.in.collaborative software engineering. This includes an analysis of
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awareness support in collaborative software development teams, an overview of sev-
eral approaches and tools to supporting continuous co-ordination, a maturity model
for outsourcing offshore, an architectural knowledge management platform, and a
set of design principles for collaborative software engineering environments.

Part III contains three chapters addressing the issue of organizational issues in
collaborative software engineering. This includes supporting the concept of col-
laborative software analysis and making analysis tools widely accessible, open
source software project communication and collaboration analysis and visualization
support, and a review and critique of multi-site software development practices.

Part I'V contains four chapters looking at a variety of related issues in the collab-
orative software engineering domain. These include key open source/free software
development collaboration issues, configuration management and collaborative
development, knowledge sharing to support collaborative software architecting, and
rationale management to enhance collaborative requirements engineering. We con-
clude with a summary of current challenges and future directions in collaborative
software engineering.

What Is Collaborative Software Engineering?

Collaboration has been a necessity ever since software engineering began. The early
days of software engineering saw very limited process, technique and tool support
for collaboration. Early efforts to support collaboration were limited to structured,
waterfall-based processes, early version control tools, rigid team role special-
ization, and centralization of software activities. The advent of Computer-Aided
Software Engineering tools and Integrated Development Environments introduced a
wider, more accessible range of collaboration support mechanisms including aware-
ness support, collaborative analysis and reviews and iterative, rapid applications
development processes. More recently has seen the growth of distributed teams,
outsourcing, open source software projects, global software engineering processes
and highly decentralized team support tools.

Fundamental challenges in collaborative software engineering remain the same:
the need to share artifacts, communicate and co-ordinate work. These occur across
a spectrum of low-level to high-level. Low-level challenges include making shared
artifacts like code, tests and designs accessible in a timely manner to team members
while controlling access, ownership, integrity and quality. Large software projects
require effective version control and configuration management techniques and
tools. Knowledge management is fundamental especially around design rationale,
architecture and processes. Software development has changed dramatically over
the past 10 years. This is evidenced by new organizational and team dynamics
including open source software, software outsourcing, distributed teams, and global
software engineering. Choice of processes, project management, tools and evolution
of software in these domains is still an emerging field of research and practice.

Key technical considerations in collaborative software engineering revolve
around process, project management, knowledge and configuration management
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and tool platform selection and operation. A software process and project man-
agement regime must be chosen that supports collaboration appropriate to the
team, project and organizational circumstances. These range from small, single-
site/single-project teams, to large team/multi-project/multi-site domains. The later
may include outsourcing and open source components. Complex software systems
require effective knowledge management approaches and support tools. They also
require scalable configuration management tools. Tool platforms and collaboration-
supporting components have become very diverse. These range from small-team,
homogeneous IDEs with awareness and collaboration plug-ins to highly diverse
platforms where software engineering is part of a larger systems engineering activ-
ity. Communication support between engineers often becomes a crucial component
of the team support infrastructure.

Being an inter-personal and—often—inter-organizational activity, collaborative
software engineering introduces a number of social and managerial challenges.
Teams may be homogeneous or highly diverse in terms of culture, language and
location. This introduces many challenges to supporting collaboration at high levels
(process, project management) and low-levels (artifact sharing, consistency). Teams
may be comprised of many generalist’s e.g., agile methods or highly specialized
individuals or sub-teams whose efforts must be coordinated. An organization needs
to ensure appropriate management of teams and between teams. In particular, global
software engineering domains introduce very new and challenging problems, such
as in contracting and quality control in outsourcing, ownership and “group dynam-
ics” in multi-site projects, and overall project direction and co-ordination in open
source software projects.

Part I — Characterizing Collaborative Software Engineering

The five papers in this section identify a range of themes around the characteris-
tics of collaborative software engineering. There has been a dramatic increase in
interest in the concept of “global software engineering” over the past 10 years. This
has included the increasing number of distributed, multi-site software engineering
teams; outsourcing of software engineering activities, often in search of cost savings
and capacity limits, and open source software development. Each of these trends
brings with it added complexity to the engineering process—software engineers are
no longer co-located, are no longer in regular face-to-face contact (if at all), and
different time zones, cultures and languages enter the mix.

A number of studies have been undertaken to better-understand the issues of
collaboration challenges in such “virtual” software team environments. A key aim
is to understand factors that adversely impact on collaboration practices and fac-
tors that support communication, co-ordination and collaboration in such domains.
Studies have focuses on a range of organizations, projects and team sizes. One area
of particularly detailed study has been requirements engineering. A distributed team
develops and shares a set of requirements and a crucial factor impacting quality of
these is communication strategies.
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Knowledge engineering has become important in collaborative software
engineering. One aspect is the development of ontologies, or shared semantic mean-
ings, of software artifacts and processes. These enable co-ordination of activities
along with improved communication about shared concepts in domains ranging
from requirements engineering to software architecture.

Agile methods have become popular in many domains of software engineering.
A characteristic is their focus on people-centric aspects of software engineering
tasks, including communication and co-ordination. Pairing is one aspect of several
agile methods that offers a tangible way to encourage improved collaboration
outcomes.

Part II — Tools and Techniques

Software engineering requires a number of complex, interleaved activities to be car-
ried out. These must be organized into logically correct teamwork and be supported
by appropriate tools. Because of the challenges of supporting collaborating in an
already complex engineering process, a multitude of techniques and tools have been
developed to support almost all activities of collaborative software engineering.

Traditionally software engineering had been a co-located activity where team
members could expect some degree of face-to-face communication and collabora-
tion and co-ordination were important activities but discrete and compartmentalized.
Outsourcing parts of a software engineering project and highly iterative agile pro-
cesses have led to an increased interest in how to best support virtual, distributed
collaboration and communication and co-ordination for team activities that repeat
in days rather than months.

A range of support mechanisms and associated tool support have appeared in
recent years to address concerns in both traditional but more particularly these
newer domains of collaborative software engineering. Social networking-style sup-
port such as tagging, shared knowledge repositories and communication support
have become popular. New search-based support and associated visualization sup-
port have become more important as developers are less familiar with large tracts of
software systems. These include mining of software repositories and context-aware
filtering mechanisms in IDEs. Event-based support mechanisms have always been
popular in collaborative support environments. These have been explored further
in the context of both same-place and distance-located teams to support proactive
notification and various levels of group awareness.

Developer-centric software engineering tools are crucial and this includes sup-
port for collaboration. Areas of particular interest in these tools are knowledge
management and expertise communication. Knowledge management requires use
of shared ontologies and supporting authoring tools, but as importantly the develop-
ment of true “virual communities” where informal knowledge sharing is supported
and encouraged. Expertise communication is one aspect where the collaboration
environment allows increasingly geographically dispersed team members to better
communicate.both knowledge.and.expertise relating to knowledge and tasks.
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Part III — Organizational Experiences

Multi-site, or geographically distributed software development, has introduced a
range of unknowns into software engineering practice and research. Of particular
note is the lack of guidance around process selection. When running a multi-site,
geographically distributed software project, what is the “best” software process to
choose to organize this activity, quite apart from tool, project management and team
selection issues? How can organizations make process choices, in particular, to best
exploit multiple time zones, team expertise, out-sourced and open-sourced parts of a
product, and ensure quality, cost and timeliness thresholds? Two fundamental ways
of organizing a distributed project are centralized control of overall process and
distribution of scoped design/code/test, compared with distributing different phases
e.g. requirements team, design and build team, testing team in different locations.

Open source software projects are an increasingly common model of distributed,
virtual software teams. Many studies have looked at collaboration aspects of such
projects, in particular the evolution of the code base and team communication and
co-ordination patterns. Recovering such information is challenging—often via bug
reports, detailed code analysis and informal interviews of key team members. It is
still an unsolved research problem how to best set up an open source project to
achieve high quality communication and co-ordination.

Software artifact analysis has been used extensively for many years. This
includes static analysis of source code, tests, designs and requirements and dynamic
analysis of execution traces, side-effects and formal models of code. Collaboration
around analysis has often been informal and poorly structured. Given the increasing
complexity of code and analysis tools and techniques, an open challenge is how
to share analysis processes and techniques, and also the tools supporting these,
particularly across organizations.

Part IV — Related Issues

A number of socio-technical issues arise in collaborative software engineering.
In free and open source software development projects these are particularly
challenging. Key issues include overall project ownership and co-ordination,
task de-composition, trust, accountability, commitment and social networking.
Collaboration affordances in the individual and group development ecosystem must
support both the range of collaboration activities but take into account the free and
open source domain of work.

Knowledge sharing is crucial in all domains of software engineering. Particular
domains of interest include requirements engineering and software architecture
where commissioner, engineer, manager and end user constraints intersect and often
must be balanced. Knowledge sharing in collaborative software architecting sup-
ports better decision making, surfacing of assumptions, and reasoning about design
decisions..In.product line.engineering, variability management is a key challenge,
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particularly when faced with multi-site software teams. Rationale management can
be used to augment the variability management process to improve collaboration
support in this context.

Configuration management has long been a challenge in software engineering
particularly as systems have grown enormously in size and complexity. As con-
figuration management requires integrating many software artifacts and ultimately
impacts all phases of proceeding development, configuration management support
systems have been an early contributor to collaborative software engineering infras-
tructure. They provide a shared space, awareness support, record and enable tracing
of team actions, and support both knowledge sharing and communication. Many
outstanding research and practice issues exist in each of these areas of configura-
tion management systems support, however, leading to next generation collaborative
software engineering tools.

Current Challenges and Future Directions

Collaborative software engineering has been a very heavily researched area and
almost all practicing software teams will need to engage in it. However, many chal-
lenges still present both in terms of adopting collaboration practices, processes and
tools and improving the state-of-the-art. Many of these challenges are long stand-
ing, and hence are fundamental to the act of working together to engineer shared
artifacts. These include assembling teams, dividing work, social networking within
and between teams, choosing best-practice processes, techniques and supporting
tools, and effective project management. Others have arisen due to new organi-
zational practices and technical advances, including open-sourced, out-sourced,
multi-site and agile software engineering contexts. We still do not know the ideal
way to share knowledge, facilitate the most effective communication, co-ordinate
massively distributed work, and design and deploy support tools for these activities.

Auckland, New Zealand John Grundy
Heidelberg, Germany Ivan Mistrik
Irvine, CA, USA André van der Hoek

Santa Cruz, CA, USA Jim Whitehead
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Chapter 1
Collaborative Software Engineering:
Concepts and Techniques

Jim Whitehead, Ivan Mistrik, John Grundy, and André van der Hoek

Abstract Collaboration is a central activity in software engineering, as all but the
most trivial projects involve multiple engineers working together. Hence, under-
standing software engineering collaboration is important for both engineers and
researchers. This chapter presents a framework for understanding software engi-
neering collaboration, focused on three key insights: (1) software engineering
collaboration is model-based, centered on the creation and negotiation of shared
meaning within the project artifacts that contain the models that describe the final
working system; (2) software project management is a cross-cutting concern that
creates the organizational structures under which collaboration is fostered (or damp-
ened); and (3) global software engineering introduces many forms of distance —
spatial, temporal, socio-cultural — into existing pathways of collaboration. Analysis
of future trends highlight several ways engineers will be able to improve project
collaboration, specifically, software development environments will shift to being
totally Web-based, thereby opening the potential for social network site integration,
greater participation by end-users in project development, and greater ease in global
software engineering. Just as collaboration is inherent in software engineering, so
are the fundamental tensions inherent in fostering collaboration; the chapter ends
with these.

1.1 Introduction

Software projects are inherently co-operative, requiring many software engineers to
co-ordinate their efforts to produce a large software system. Integral to this effort
is developing shared understanding surrounding multiple artifacts, each artifact
embodying its own model, over the entire development process [97].
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Software engineers have adopted a wide range of communication and collabora-
tion technologies to assist in the co-ordination of project work. Every mainstream
communication technology has been adopted by software engineers for project
use, including telephone, teleconferences, email, voice mail, discussion lists, the
Web, instant messaging, voice over IP, and videoconferences. These communica-
tion paths are useful at every stage in a project’s lifecycle, and support a wide range
of unstructured natural language communication. Additionally, software engineers
hold meetings in conference rooms, and conduct informal conversations in hall-
ways, doorways, and offices. While these discussions concern the development of
a formal system, a piece of software, the conversations themselves are not formally
structured (exceptions being automated email messages generated by SCM systems
and bug tracking systems).

In contrast to the unstructured nature of conversation, much collaboration in soft-
ware engineering is relative to various formal and semi-formal artifacts. Software
engineers collaborate on requirements specifications, architecture diagrams, UML
diagrams, source code, and bug reports. Each is a different model of the ongoing
project. Software engineering collaboration can thus be understood as artifact-based
or model-based collaboration, where the focus of activity is on the production of new
models, the creation of shared meaning around the models, and elimination of error
and ambiguity within the models.

This model orientation to software engineering collaboration is important due to
its structuring effect. The models provide a shared meaning that engineers use when
co-ordinating their work, as when engineers working together consult a require-
ments specification to determine how to design a portion of the system. Engineers
also use the models to create new shared meaning, as when engineers discuss a UML
diagram, and thereby better understand its meaning and implications for ongoing
work. The models also surface ambiguity by making it possible for one engineer to
clearly describe their understanding of the system; when this is confusing or unclear
to others, ambiguity is present. Without the structure and semantics provided by
models, it would be more difficult to recognize differences in understanding among
collaborators.

These twin threads — the appropriation of novel communications technologies
for project work, and the model-centric nature of collaboration — are what give the
study of software engineering collaboration its unique character. Focusing just on
communication, the low cost and global reach of email, web, and instant messaging
technologies created the potential for global, multi-site software engineering teams.
This made it less expensive to globally distribute closed source projects, and cre-
ated the technological conditions that supported the emergence of open sourceopen
source software. In turn, understanding how best to structure and support this
communication-afforded collaboration within distributed software engineering has
been the focus of sustained study. Much traditional collaborative work research
has focused on the use of novel communication technologies in a variety of work
settings, viewing them as artifact-neutral co-ordination technologies. What dis-
tinguishes the study of collaboration within software engineering from this more
general study.of collaboration.is.its focus.on model creation. Software engineers are
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not just collaborating in the abstract — they are collaborating over the creation of a
series of artifacts that, together, provide a multi-faceted view of the behavior of a
complex system.

1.2 Defining Collaborative Software Engineering

Collaboration is pervasive throughout software engineering. Almost all non-trivial
software projects require the effort and talent of multiple people to bring it to con-
clusion. Once there are two or more people on a software project, they must work
together, that is, they must collaborate. Thus, a simple ground truth is that any soft-
ware project with more than one person is created through a process of collaborative
software engineering.

There is an old story, running through many cultures, about six blind men and
an elephant. One man touches the elephant’s trunk, and says the elephant is a rope.
Another touches a leg, and says the elephant is a tree trunk. The remaining four
describe the elephant as a snake (tail), spear (tusk), wall (body), or brush (end of
tail). A large software system is like the elephant in the story, with each software
engineer having their own view and understanding of the overall system. Unlike the
story, a software system under development lacks the physical fixedness of the ele-
phant; one cannot simply step back and see the shape of the entire software system.
Instead, a software system is shaped by the intersecting activities and perspectives
of the engineers working on it. Software is thought-stuff, the highly malleable con-
version of abstractions, algorithms, and ideas into tangible running code. Hence
software engineers shape the system under construction while developing their
understanding of it.

Human minds are enormously flexible, approaching problems from unique
experiential, cultural, educational, and biochemical conditions; developers have
widely varying backgrounds and experiences, come from different cultures, have
different types of educational backgrounds, and have varying body chemistry.
Somehow, through the imperfect instrument of language, the vast pool of vari-
able outcomes inherent in any software system needs to be reduced to a single
coherent system. In this view, software engineering collaboration is the media-
tion of the multiple conflicting mental conceptions of the system held by human
developers.

Collaboration takes the form of tools to structure communication and lead to
consensus, as in the case of requirements elicitation tools. Other tools mediate
conflicts among differing views of the system, as in the case of configuration
management tools both preventing conflicting viewpoints from being realized as
incompatible code changes, and providing a process for handling conflicts when
they occur (merge tools). Tools for representing design and architecture diagrams
also help to mediate conflicts by making internal mental models explicit, thereby
allowing other actors to identify points of departure from their own views of the
system.
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Since software is so abstract and malleable, and is created via a process of nego-
tiating multiple viewpoints on the system, it is inevitable that software will have
errors. Consequently, software engineering collaboration also involves the joint
identification and removal of error. This can be seen in software inspections, where
multiple engineers bring their unique perspectives to the task of finding latent errors.
It is also visible in test teams, where many engineers work together to write system
test suites, and use bug tracking software to co-ordinate bug fixing effort.

People have a hard time working together effectively. To work well together,
engineers need to understand near-term and long-term goals, be clustered into teams,
and understand their personal responsibilities. Engineers also need to be motivated,
and receive appropriate reward for their work. Hence, software engineering collab-
oration is about creating the organizational structures, reward structures, and work
breakdown structures that afford effective work towards goal. As a consequence,
software engineering management and leadership is an integral part of software
engineering collaboration.

1.3 Historical Trends in Collaborative Software Engineering

Software engineers have developed a wide range of model-oriented technologies
to support collaborative work on their projects. These technologies span the entire
lifecycle, including collaborative requirements tools [5, 39], collaborative UML
diagram creation, software configuration management systems and bug tracking
systems [11]. Process modeling and enactment systems have been created to help
manage the entire lifecycle, supporting managers and developers in assignment of
work, monitoring current progress, and improving processes [7, 57]. In the commer-
cial sphere, there are many examples of project management software, including
Microsoft Project [69] and Rational Method Composer [42]. Several efforts have
created standard interfaces or repositories for software project artifacts, including
WebDAV/DeltaV [24, 98] and PCTE [96]. Web-based integrated development envi-
ronments serve to integrate a range of model-based (SCM, bug tracking systems)
and unstructured (discussion list, web pages) collaboration technologies.

Tool support developed specifically to support collaboration in software engi-
neering falls into four broad categories. Model-based collaboration tools allow
engineers to collaborate in the context of a specific representation of the software,
such as a UML diagram. Process support tools represent all or part of a software
development process. Systems using explicit process representations permit soft-
ware process modelling and enactment. In contrast, tools using an implicit represen-
tation of software process embed a specific tool-centric work process, such as the
checkout, edit, checking process of most SCM tools. Awareness tools do not sup-
port a specific task, and instead aim to inform developers about the ongoing work of
others, in part to avoid conflicts. Collaboration infrastructure has been developed to
improve interoperability among collaboration tools, and focuses primarily on their
data.and.control integration..Below,.we.give a brief overview of previous work in
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these areas, to provide context for our recommendations for future areas of research
on software collaboration technologies.

1.3.1 Model-Based Collaboration Tools

Software engineering involves the creation of multiple artifacts. These artifacts
include the end product, code, but also incorporate requirements specifications,
architecture description, design models, testing plans, and so on. Each type of
artifact has its own semantics, ranging from free form natural language, to the semi-
formal semantics of UML, or the formal semantics of a programming language.
Hence, the creation of these artifacts is the creation of models.

Creating each of these artifacts is an inherently collaborative activity. Multiple
software engineers contribute to each of these artifacts, working to understand what
each other has done, eliminate errors, and add their contributions. Especially with
requirements and testing, engineers work with customers to ensure the artifacts
accurately reflect their needs. Hence, the collaborative work to create software arti-
facts is the collaborative work to create models of the software system. Systems
designed to support the collaborative creation and editing of specific artifacts are
really supporting the creation of specific models, and hence support model-based
collaboration. Collaboration tools exist to support the creation of every kind of
model found in typical software engineering practice.

Figure 1.1 provides an overview of model-oriented collaboration across a soft-
ware project lifecycle. In the figure, rows represent different types of actors or
models, while columns represent different phases in the development of a soft-
ware system. Overlaps between bubbles for types of people represent collaboration.
So, for example, the overlap of stakeholders and requirements engineers in the
requirements column represents their collaboration to create the requirements doc-
umentation for the system to be built. Project management cuts across all project
phases and impacts all types of software engineer, hence it is represented as a hor-
izontal bar. Remote collaboration occurs when the set of people within a bubble
is distributed across multiple sites, or when each bubble in a collaboration is at a
different site.

Overlap between model type bubbles indicates dependencies between the mod-
els. For example, determining a system’s software architecture often requires
negotiation with the customer over the implications of requirements, and may
require an understanding of the fine-grained design of certain system functions. For
simplicity, the figure is drawn using a waterfall-type process model. Other process
models modify this picture. Spiral development would involve additional negotia-
tion around the importance of various types of risk, and what constitutes acceptable
levels of risk. An evolutionary prototyping model would add collaboration between
stakeholders and developers in the coding phase, representing the negotiation that
takes place after a demonstration of the evolving system prototype to the customer.

In the sections below, we provide an overview of the collaboration that takes
place.during.each-project-phasesand-active areas of research within these phases.
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Fig. 1.1 Overview of model driven collaboration

1.3.1.1 Requirement Centered Collaboration

In the requirements phase, there are many existing commercial tools that sup-
port collaborative development of requirements, including Rational’s RequisitePro
[43] and DOORS [41] products, and Borland’s CaliberRM [8] (a more exhaus-
tive list can be found at [60]). These tools allow multiple engineers to describe
project use cases and requirements using natural language text, record dependen-
cies among and between requirements and use cases, and perform change impact
analyses. Integration with design and testing tools permits dependencies between
requirements, UML models, and test cases to be explicitly represented.

Collaboration features vary across tools. Within RequisitePro, requirements are
stored in a per-project requirements database, and can be edited via a Web-based
interface by editing a Word document that interacts with the database via a plu-
gin, or by direct entry using the RequisitePro user interface. Multiple engineers can
edit the requirements simultaneously via these interfaces. While cross-organization
interaction is possible via the Web-based interface, the tool is primarily designed
for within-organization use. RAVEN [79] supports collaboration via a built-in
checkout/checkin process on individual requirements. While most requirements
tools are desktop applications, Gatherspace [29] and eRequirements [29] are web-
based collaborative requirements tools, with capabilities only accessible via a Web
browser.

Research on collaborative requirements tools has focused on supporting nego-
i equirements engineering processes, and
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exploration of new media and platforms. Win-Win was designed to support a
requirements engineering process that made negotiation processes explicit in the
interface of the tool, with an underlying structure that encouraged resolution of con-
flicts, creating “win—win” conditions for involved stakeholders [5]. ART-SCENE
supports a requirements elicitation approach in which a potentially distributed team
writes use cases using a series of structured templates accessible via a Web-based
interface. These are then used to automatically generate scenarios that describe nor-
mal and alternative situations, which can then be evaluated by requirements analysts
[63]. Follow-on work has examined the use of a mobile, PDA-based interface for
ART-SCENE, taking advantage of the mobility of the interface to show use cases to
customer stakeholder in-situ [64]. The Software Cinema project examined the use
of video for recording dialog between engineers and stakeholders, allowing these
conversations to be recorded and analyzed in depth [17].

1.3.1.2 Architecture Centered Collaboration

Though the creation of final software architecture for a project is a collaborative
and political activity, much of this collaboration takes place outside architecture-
focused tools. Rational Software Architect is an UML modelling tool focused on
software architecture. Engineers can browse an existing component library and
work collaboratively on diagrams with other engineers, with collaboration mediated
via the configuration management system. Research systems, such as ArchStudio
[18, 95] and ACMEStudio [53] typically support collaborative authoring by ver-
sioning architecture description files, allowing a turn-taking authoring model. The
MolhadoArch system is more tightly integrated with an underlying fine-grain ver-
sion control system, and hence affords collaboration at the level of individual
model elements [73]. Supporting an explicitly web-based style of collaboration,
Maheshwari and Teoh [62], describes a web-based tool that supports the ATAM
architecture evaluation methodology.

1.3.1.3 Design Centered Collaboration

Today, due to the strong adoption of the Unified Modelling Language (UML),
mainstream software design tools are synonymous with UML editors, and include
Rational Rose [44], ArgoUML [78], Borland Together [9], and Altova UModel [2]
(a more complete list is at [102]). Collaboration features of UML authoring tools
mostly depend on the capabilities of the underlying software configuration manage-
ment system. For example, ArgoUML provides no built-in collaboration features,
instead relying on the user to subdivide their UML models into multiple files, which
are then individually managed by the SCM system. The Rosetta UML editor [32]
was the first to explore Web-based collaborative editing of UML diagrams, using a
Java applet diagram editor. Recently, Gliffy [30] and iDungu [45] have web-based
diagram editors that support UML diagrams. Gliffy uses linear versioning to record
document changes,and.can.inform other.collaborators via email when a diagram has
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changed. SUMLOW supports same-time, same-place collaborative UML diagram
creation via a shared electronic whiteboard [16].

1.3.1.4 Collaboration Around Testing and Inspections

Like requirements, testing often involves substantial collaboration between an engi-
neering team and customers. Testing interactions vary substantially across projects
and organizations. Application software developers often make use of public beta
tests in which potential users gain advance access to software, and report bugs
back to the development team. As well, best practices for usability testing involves
multiple people performing specific tasks under observation, another form of test-
ing based collaboration. Adversarial interactions are also possible, as is the case
with a formal acceptance test, where the customer is actively looking for lack of
conformance to a requirements specification.

Within an engineering organization, testing typically involves collaboration
between a testing group and a development team. The key collaborative tool used to
manage the interface between testers (including public beta testers) and developers
is the bug tracking (or issue management) tool [90]. Long a staple of software devel-
opment projects, bug tracking tools permit the recording of an initial error report,
prioritization, addition of follow-on comments and error data, linking together sim-
ilar reports, and assignment to a developer who will repair the software. Once a bug
has been fixed, this can be recorded in the bug tracking system. Search facilities
permit a wide range of error reporting. A comparison of multiple issue tracking and
bug tracking systems can be found at [101].

Software inspections involve multiple engineers reviewing a specific software
artifact. As a result, software inspection tools have a long history of being collab-
orative. Hedberg [34] divides this history into early tools, distributed tools, asyn-
chronous tools, and web-based tools. Early tools (circa 1990) were designed to sup-
port engineers holding a face-to-face meeting, while distributed tools (1992-1993)
permitted remote engineers to participate in an inspection meeting. Asynchronous
tools (1994-1997) relaxed the requirement for the inspection participants to all meet
at the same time, and Web-based tools supported inspection processes on the Web
(1997-onwards). MacDonald and Miller [61] also survey software inspection sup-
port systems as of 1999. More recently, Meyer describes a distributed software
inspection process using only off-the-shelf communication technologies, includ-
ing voice over IP, Google Docs (web-based collaborative document authoring), and
Wiki. These technologies were found to be sufficient to conduct effective reviews;
no specialized review software was necessary [68].

1.3.1.5 Traceability and Consistency

While ensuring traceability from requirements to code and tests is not inherently
a collaborative activity, once a project has multiple engineers, creating traceability
links.and.ensuring.their.consistency.is.a-major task. XLinkit performs automated
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consistency checks across a project [71], while [65] describes an approach for auto-
matically inferring documentation to source code links using information retrieval
techniques. Inconsistencies identified by these approaches can then form the start-
ing point for examining whether there are mismatches between the artifacts created
by different collaborators.

1.3.2 Process Centered Collaboration

Engineers working together to develop a large software project can benefit from
having a predefined structure for the sequence of steps to be performed, the roles
engineers must fulfill, and the artifacts that must be created. This predefined struc-
ture takes the form of a software process model, and serves to reduce the amount of
co-ordination required to initiate a project. By having the typical sequence of steps,
roles, and artifacts defined, engineers can more quickly tackle the project at hand,
rather than renegotiating the entire project structure. Over time, engineers within an
organization develop experience with a specific process structure. The net effect is
to reduce the amount of co-ordination work required within a project by regularizing
points of collaboration, as well as to increase predictability of future activity.

To the extent that software processes are predictable, software environments can
mediate the collaborative work within a project. Process centered software develop-
ment environments have facilities for writing software process models in a process
modelling language (see [74] for a retrospective on this literature), then executing
these models in the context of the environment. While a process model lies at the
core of process centered environments, this process guides the collaborative activity
of engineers working on other artifacts, and is not itself the focus of their collab-
oration. Hence, for example, the environment can manage the assignment of tasks
to engineers, monitor their completion, and automatically invoke appropriate tools.
A far-from-exhaustive list of such systems includes Arcadia [49], Oz [3], Marvel
[4], Conversation Builder [51], and Endeavors [7]. One challenge faced by such
systems is the need to handle exceptions to an ongoing process, an issue addressed
by [50].

1.3.3 Collaboration Awareness

Software configuration management systems are the primary technology co-
ordinating file-based collaboration among software engineers. The primary collab-
orative mechanism supported by SCM systems is the workspace. Typically each
developer has their own workspace, and uses a checkout, edit, checkin cycle to
modify a project artifact. Workspaces provide isolation from the work of other
developers, and hence while an artifact is checked out, no other engineer can
see its current state. Many SCM systems permit parallel work on artifacts, in
which multiple engineers edit the same artifact at the same time, using merge
tools. to.resolve inconsistencies. [67]..Workspaces allow engineers to work more
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efficiently by reducing the co-ordination burden among engineers, and avoiding
turn-taking for editing artifacts. They raise several issues, however, including the
inability to know which developers are working on a specific artifact. Palantir
addresses this problem by providing engineers with workspace awareness, infor-
mation about the current activities of other engineers [85]. By increasing awareness
of the activities of other engineers, they are able to perform co-ordination activ-
ities sooner, and potentially avoid conflicts. Augur is another example of an
awareness tool [28]. It provides a visualization of several aspects of the devel-
opment history of a project, extracted from an SCM repository, thereby allowing
members of a distributed project to be more aware of ongoing and historical
activity.

1.3.4 Collaboration Infrastructure

Various infrastructure technologies make it possible for engineers to work collabo-
ratively. Software tool integration technologies make it possible for software tools
(and the engineers operating them) to co-ordinate their work. Major forms of tool
integration include data integration, ensuring that tools can exchange data, and con-
trol integration, ensuring that tools are aware of the activities of other tools, and can
take action based on that knowledge. For example, in the Marvel environment, once
an engineer finished editing their source code, it was stored in a central repository
(data integration), and then a compiler was automatically called by Marvel (control
integration) [4].

The Portable Common Tool Environment (PCTE) was developed from 1983
to 1989 to create a broad range of interoperability standards for tool integration
spanning data, control, and user interface integration [96]. Its greatest success was
in defining a data model and interface for data integration. The WebDAV effort
(1996-2006) aimed to give the Web open interfaces for writing content, thereby
affording data integration among software engineering tools, as well as a range of
other content authoring tools [24, 98]. Today, the data integration needs of software
environments are predominantly met by SCM systems managing files via isolated
workspaces. However, the world of data integration standards and SCM meet in
tools like Subversion [75] that use WebDAYV as the data integration technology in
their implementation.

For control integration there are two main approaches, direct tool invocation,
and event notification services. In direct tool integration, a primary tool in an
environment (e.g., an integrated development environment, like Eclipse) directly
calls another tool to perform some work. When multiple tools need to be coordi-
nated, a message passing approach works better. In this case, tools exchange event
notification messages via some form of event transport. The Field environment
introduced the notion of a message bus (an event notification middleware service) in
development environments [81], with the Sienna system exemplifying more recent
work in this space [13].
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Ahmadi et al. suggest that future collaboration support for software projects
should build upon a foundation of technologies that can be used to create social
networking web sites, what they term Social Network Services [1].

1.3.5 Project Management

Software project management is intimately concerned with collaboration, since it
structures the effort of the project via the creation of teams, subdivision of work to
teams, schedules, and budget. These organizational, task, and cost structures drive
the co-ordination and collaboration needs of a project.

Software project management is a subdiscipline of project management, and
emerged as a separate concern within software engineering in the 1970s. During this
decade, organizations made increasing use of computer-based information technol-
ogy, leading to a demand for more, and larger software systems. The most influential
early project management book is Brook’s Mythical Man Month (1975) [10]. In
1981 Boehm defined the entire field of software economics in his landmark book
of the same name [6] introducing COCOMO, the Constructive Cost Model for
software. A January, 1984 edition of IEEE Trans. on Software Engineering [93]
portrayed the state of the practice in software project management, and looked into
its future. The year 1987 saw the release of DeMarco and Lister’s Peopleware:
Productive Projects and Teams, which emphasizes the importance of team collab-
oration [19]. A recent book in a similar vein was written in 1997 by McConnell,
who proposed a list of Ten Essentials for software projects, based on “hard-won
experience” [66].

The past 20 years have seen multiple efforts to capture and codify the knowl-
edge and key practices required to perform effective project management. Watts
Humphrey wrote Managing the Software Process in 1989, which first introduced
the capability maturity model (fully completed in 1993) [38]. This model is signifi-
cant for providing a multi-stage evolutionary roadmap by which an organization can
improve its ability to manage and construct software systems. The IEEE Software
Engineering Standards [47] capture many of the fundamental “best practices” of
the software engineering project management. The Project Management Book of
Knowledge (PMBOK), (1987, with four revisions since) documents and standard-
izes well-known project management knowledge and practices across a wide range
of project types, including software projects [76]. The second edition of Thayer’s
Software Engineering Project Management [92] provides a framework for project
management activities based on the planning, organizing, staffing, directing, and
controlling model. The ISO 10006 “Quality management — Guidelines to quality to
project management” [48], claims to provide “guidance on quality system elements,
concepts and practices for which the implementation is important to, and has an
impact on, the achievement of quality in project management”.

In 2005 Pyster and Thayer decided to revisit software project management and
assemble a set of articles that reflect how it has advanced over the past 20 years [77].
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1.4 Global and Multi-Site Collaboration

In today’s global economy, increasing numbers of software engineers are expected
to work in a distributed environment. For many organizations, globally-distributed
projects are rapidly becoming the norm [35]. Organizations construct global teams
so as to leverage highly skilled engineers and site-specific expertise, better address
the needs of users and other stakeholders, spread project knowledge throughout the
organization, exploit advantages of specific labor markets, accommodate workers
who wish to telecommute, and reduce costs. Mergers and alliances among organi-
zations also create the need for distributed projects. While providing many advan-
tages, global distribution also makes it harder for project members to collaborate
effectively.

Global teams find it much harder to develop shared understanding around
the evolving software artifact, as the distribution involved makes every aspect
of communication more difficult. Team members at different sites lose the abil-
ity to have ad-hoc, informal communication due to spontaneous face-to-face
interactions. Different sites often involve different national and organizational
cultures, creating what Holmstrom et al. call socio-cultural distance [36]. As
this distance increases, there is an increase in the challenge of interpreting the
meaning of project communication. Engineers spread across many time zones
reduce communication windows [33]. In reaction to these challenges, a core
set of developers tends to emerge that acts as the key liaisons, or gatekeepers,
between teams in different geographical locations. This team not only performs
key co-ordination activities, but also contains the most technically productive team
members [14].

Research on globally distributed software projects tends to focus on either char-
acterizing their behavior (e.g. [33, 36]), or developing tools and techniques to
mitigate the negative aspects of global distribution, so as to leverage its bene-
fits. An example of the latter is the global software development handbook, which
documents a wide range of issues and techniques for managing a global software
project [82]. Lanubile provides a recent overview of tools for communication and
co-ordination in distributed software projects [56]. In a hopeful sign that advanced
tool support can overcome some of the drawbacks of global distribution, Wolf
et al. report on a study of the development of the IBM’s Jazz project [103]. This
study shows that the Jazz team did not experience a significant decrease in project
communication due to the distance between project sites.

Herbsleb presents a thorough survey of research on distributed software engi-
neering in [35], along with thoughts on future research challenges. Herbsleb views
the main challenge of distributed software engineering as the management of
dependencies (that is, co-ordination) over a distance. We share this view, though
this chapter also emphasizes the challenges inherent in creating shared meaning
around (and identifying defects in) the many model-oriented artifacts in a software
project.
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1.5 Social Considerations

1.5.1 Software Teams

All engineering domains have a mix of technical and social aspects. For software
engineering, such technical aspects include: software processes used to organise the
life-cycle of software development; project management to co-ordinate teams work-
ing on software projects; requirements engineering, to capture key user needs of
software systems and to specify — formally and/or informally — these needs; design,
to identify the approaches via which the software systems will be realised; imple-
mentation, constructing executable systems; quality assurance, ensuring developed
systems meet user requirements to acceptable thresholds; and deployment, making
and keeping software systems available In addition, software very often must be
modified over time and “maintained”.

All of these technical activities must be carried out — in almost all cases — by a
team of software engineers and related personnel. Such a “software team” is respon-
sible for all of these technical aspects of engineering the software system and must
be formed, organized, managed, evolved and ultimately disbanded. Team forma-
tion may be top-down or bottom-up [12, 99]. Recently team formation has had to
take into account a trend to global software engineering including outsourcing, open
sourcing and virtual teams [82].

1.5.2 Team Organization

Teams may be organised in a variety of ways [99]. “Tayloristic” teams have spe-
cialists filling specific roles, such as a requirements team, design team, testing
team, coding team etc. These tend to be specialized, role-specific, task-focused and
top-down directed units. “Agile” teams adopt a very different approach [88]. In
these teams members tend to be generalists, the team people-focused rather than
task-focused, and management bottom-up. Each of these teams brings very dif-
ferent social interaction protocols to bear on software development. Traditional,
Tayloristic teams tend to be hierarchical and more centralized which suits some
development projects and personalities. Agile teams tend to be more customer-
driven, democratic and flexible. While this suits some developer personalities and
problem domains it can be problematic. Each style of team organizationteam orga-
nization tends to utilize different collaboration approaches, project management
strategies and sometimes tool support.

More recent trends have seen the rise of virtual software teams, outsourced soft-
ware and open source communities. From a social perspective virtual teams need to
overcome the challenges of distance, cultural and language differences and often dif-
ferent time zones [12]. Language barriers can mean it is difficult for team members
to exchange information, co-ordinate work and communicate without mediation.
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Cultural barriers can impact team dynamics in terms of co-ordination strategies,
timeliness of work, and task allocation and monitoring. Different time zones delay
communication sometimes leading to incorrect actions or incorrect assumptions
about software artefacts and processes.

Outsourcing usually requires strong contractual relationships between teams
[22]. Two common approaches are to divide an overall team into units of spe-
cialisation e.g. requirements, code, test etc., or to divide up the team vertically
according to software function, e.g., the payments team, the on-line transaction
processing team, the integration team. Collaboration challenges arise on the team
boundaries, within teams as per other co-located models as well as for overall
project management.

A very interesting set of social dynamics occur in the open source/voluntary
software arena [21]. Often effort is either donated or contributed out of a sense of
community belonging or mutual interest, in contrast to most other software develop-
ment endeavours. This can lead to issues of ownership, or lack thereof, co-ordination
challenges when available time of “team members” is unknown or opaque, and usu-
ally voluntary team membership for most or all members. Opt-in and opt-out to
particular parts of a development project or software can often occur.

1.5.3 Team Composition

Team composition has a strong bearing on the social dynamics of both a single team
and others its members may need to interact with. Some teams may be composed of
a set of specialists while others mainly generalists. Traditional approaches to soft-
ware team organisation often assume teams of specialists [99] and many outsourcing
and virtual team models have also adopted this approach [12, 22]. Specialisation has
advantages of clearer division of responsibility among members and ability to lever-
age particular skill bases. However it has major disadvantages when particular skills
are rare or become unavailable for a time; and can lead to team conflict around divi-
sions of work. Generalist teams are often favoured in agile projects [88] and are
often a characteristic of many open source “teams” [21] by virtue of opt-in/opt-out
driven by particular areas of interest or need.

Some teams include end users, or “customers”, of the software product as a mat-
ter of course [88] whereas others isolate many team members from these customers
[99]. Each has advantages and disadvantages in terms of collaboration support and
project co-ordination from a social perspective. Customers generally have a very
different perspective on the software project to developers and co-location greatly
enhances communication and collaboration. However customers are often driven by
self-interest and localised perspectives which may result in limited communication
in particular areas.

Team membership can be whole-of-project, short-lived, or periodic. Some teams
are created for the lifetime of a project in order to ensure available skill base and
to enable deep understanding not only of the project but other team member’s
skillss-abilities-and-awareness-of woik-OQutsourced projects will typically leverage
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a remote team for the lifetime of the outsourced activity. Traditional teams may be
sensitive to particular skill loss and agile teams try to mitigate this by a stronger
emphasis on generalists [88].

Many teams are shared across projects. This is particularly common in virtual and
out-sourced domains where specialised teams may be working on several projects at
once. This greatly complicates inter-team communication and collaboration. Open
source projects are often characterised by some team members participating for
the whole duration of a project; some leaving early or joining later; and some
participating on and off as their interest and time allows. Sometimes a team or
members of a team may be contributing simultaneously to software development
in different organisations. Again, virtual teams and particularly open source and
outsourced projects may show this characteristic. These situations make building up
a “corporate memory” around software a real challenge.

1.5.4 Knowledge Sharing

Knowledge sharing in software development has always been a challenge. The trend
to global software engineering — common in virtual teams, outsourcing projects
and open source projects — exacerbates this. Working in different time zones means
that co-ordination of activities will typically be coarser-grained than possible with
co-located teams.

Information may be written in different languages or from very different per-
spectives. Different emphases may be put on information depending on the cultural
background of team members. Approaches to managerial aspects of teams, task
division and reporting may need to take careful account and respect of cultural dif-
ferences to ensure team harmony and effectiveness [55]. Language difference is
probably the most obvious — and most challenging — issue when sharing knowl-
edge across teams. However, cultural differences and the impact of different time
zones and lack of face-to-face collaboration and co-ordination can also be significant
issues [35, 55].

It is common to encounter significant differences in work culture, habits,
approach to management and self-organization in cross-cultural teams. Again,
open source projects, outsourcing projects and distributed software teams com-
monly exhibit the need to manage software engineering knowledge in cross-cultural,
cross-language and cross-time zone environments.

1.6 Managerial Considerations

Software project management (SPM) includes the knowledge, techniques, and tools
necessary to manage the development of software products. In more detail, SPM
includes the inception, estimation, and planning of software projects along with
tracking, controlling, and co-ordinating the execution of the software project. The
goalof:SPMyisstostacklesansoptimalsbalance between planning and execution.
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1.6.1 Software Project Management

The Project Management Institute defines project management as “the application
of knowledge, skills, tools, and techniques to project activities in order to meet or
exceed stakeholder’s needs and expectations from a project” [76].

The intent of project management is to drive a project forward through a series
of periods, phases and stages tailored to the specific project and its particular
development and implementation strategy. These time intervals should be reflec-
tive of the product and its environment. Driving a project forward means steering
it through these intervals separated by “gates” as a means of ensuring control and
continued support by all of the partners involved [100].

Software engineering management can be defined as application of management
activities — planning, co-ordinating, measuring, monitoring, controlling, and report-
ing — to ensure that the development and maintenance of software is systematic,
disciplined, and quantified [46].

The key issue in Software Project Management (SPM) is decision making. Many
of the decisions that drive software engineering are about how the software engi-
neering process should take place, not just what software supposed to do or how it
will do it, i.e., the project management has to be viewed in relation with product
development and engineering processes.

1.6.2 SPM for Collaborative Software Engineering

There are four management areas that are particularly important in collaborative
software engineering: (1) supporting communications in the project; (2) recon-
ciling different stakeholder’s viewpoints; (3) improving the process; (4) rapidly
constructing the knowledge [25].

1.6.2.1 Supporting Communications in the Project

It is known that large organizations are associated with large communication
overhead [6, 10, 54, 86]. For example, it is typical for an engineer in mid to
large organizations to spend between half and three quarters of their time on
communication, leaving only a fraction of their time for engineering work [86].

While the cost of communication has been noted for a long time, it is becom-
ing increasingly worse. Communication overhead has a broad number of causes:
number of counterparts, differences in backgrounds, notations, and conventions;
effectiveness of communication tools; distribution of organizations. In general, the
worse the communication overhead associated with the transmission of information,
the less effective and responsive an organization becomes.

1.6.2.2 To Reconcile Conflicting Success Criteria in the Project

One of the problems in software development is to elicit and satisfy the success crite-
ria-of multiple stakeholders=Useiss¢clientsy developers, and maintainers are involved
in different aspects of the development and operating of the software system, and
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have different and conflicting views on the system [26]. The role of the project
manager is to elicit, negotiate, satisfy, and trade-off multiple criteria originating
from the key stakeholders so that each stakeholder “wins” to ensure the success and
sustainability of the product.

Often, the issue of dealing with conflicting success criteria is not only to rec-
oncile conflicting views, but to identify the key stakeholders of the system and to
clarify their success criteria. Once these criteria are known to all, it is much easier
to identify conflicts and to resolve them by negotiating compromise alternatives.

To address these issues, there is a need for negotiation techniques and support
early in system development, while changes in requirements and technology are
possible and cost effective.

1.6.2.3 Improving the Process in the Project

Software engineering literature has provided many models, called life cycle models,
of how software development occurs. In practice, software engineering tends to fol-
low a more complex pattern, similar to problem solving in other human activities,
which creative, opportunistic, involving, incremental building is followed by radi-
cal reorganizations sparked by sudden insights [72]. Moreover, the occurrence and
frequency of the radical reorganization depend on the organization and the project
context.

The field of software process improvements has gained ground in recent years, in
supporting managers and organization in modelling and measuring software devel-
opment processes. While software process improvement practices lead to more
repeatable and more predictable processes, they usually do not deal with creative
processes such as requirements engineering and do not support managers in dealing
with radical reorganizations.

1.6.2.4 Rapidly Construct the Knowledge in the Project

A knowledge management approach should focus on the informal communi-
cation helping navigate and update digital repositories and digital repositories
helping to identify key experts and stakeholders. Such a knowledge management
approach would also enable stakeholders to create, organize, and capture infor-
mal or formal knowledge, in real time. This approach is called rapid knowledge
construction [89].

Rapid knowledge construction is often needed when common knowledge needs
to be elicited and merged from a number of groups, possibly distributed in the
organization. Rapid knowledge construction includes the following challenges:
adaptable to context; real-time capture; enable reuse.

Knowledge management and rapid knowledge construction are not manage-
ment activities in the traditional sense (organizing work and resources). However,
knowledge management is essentially cross-functional, and hence, requires the
participation and facilitation of many levels, including project and program
management.
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1.7 Future Trends

As our understanding of software engineering collaboration deepens and the range
of easily adoptable collaboration technologies expands, opportunities are created for
improving collaborative project work. This section outlines several future trends in
software collaboration research.

1.7.1 IDEs Shift to the Web

One clear trend in collaboration tools is the existence of web-based tools in every
phase of software development. This mirrors the broader trend of many applications
moving to the web, afforded by the greater interactivity of AJAX (asynchronous
JavaScript and XML), more uniformity in JavaScript capabilities across browsers,
and increasing processing power in the browser. Web-based applications have the
benefit of centralized tool administration, and straightforward deployment of new
system capabilities. They also make it possible to collect highly detailed usage met-
rics, allowing rapid identification and repair of observed problems. Web application
variants can also be evaluated quickly by giving a small percentage of the users a
slightly modified version, then comparing results with the baseline. The advantages
of web-based applications are compelling, and create substantial motivation to move
capability off of desktops and into the web.

Traditionally, the most significant drawback to web-based applications has been
the lack of user interface interactivity, and so graphics or editing intensive applica-
tions were traditionally not viewed as being suitable for the web. In the realm of
software engineering, this meant that UML diagram editing and source code editing
were relegated to desktop only applications. Google Maps smashed the low inter-
activity stereotype in early 2005, and is now viewed as the vanguard of the loosely
defined “Web 2.0” movement that began in 2004. Web 2.0 applications tend to have
desktop-like user interface interactivity within a web browser, as well as facilities
for other sites to integrate their data into the application, or integrate the site’s data
into another application.

The pathway is now clear for the creation of a completely web-based integrated
development environment. The Bespin code editor supports highly interactive,
feature-rich source code editing within a browser [70], with direct back-end integra-
tion with source code management systems. Due to the high degree of interactivity
required, source code editing is the most thorny problem of moving to a totally web-
based environment. Bespin demonstrates that completely web-based code editing is
possible. With the source code editor in place, editors for other models in the soft-
ware engineering lifecycle can be integrated. For example, the Gliffy drawing tool
supports browser-based UML diagram editing [30]. Web-based requirements and
bug tracking tools can also be tied in, along with web-based word processing and
spreadsheets, such as Google Docs [31], Zoho Writer [104], and the Glide suite
[94]. Web-based project build technologies such as Hudson [37] make it possible to
remotely-build-and-unit-test-softwaresremoving the last threads that bind software
development to the desktop.
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The technical hurdle of bolting together multiple existing web-based tools into
a single environment should be straightforward to overcome. What comes next are
the fundamental research questions. To achieve close integration among tools, some
form of data integration will be necessary. This then leads to the hard problem of
developing data interchange standards among pluggable tools in various parts of the
development lifecycle.

The ability to gather finely detailed information about the work practices
of software engineers can allow rapid tuning and improvement of web-based
environments. It also opens the possibility of a flowering of research in empirical
software engineering, as large amounts of software project activity data are gath-
ered across many open source software projects. This, in turn, raises the issue of
just what degree of project monitoring is acceptable to developers, and who should
have access to collected data.

A web-based environment opens the possibility for integration with other web-
based collaboration technologies, such as social networking sites. This leads to our
next future direction.

1.7.2 Social Networking

Social networking sites such as MySpace, Facebook, and LinkedIn have, in the
space of a few short years, emerged as major hubs of social interaction. By pro-
viding awareness of the actions of friends and the ability to build closer social ties,
these sites act as a kind of social glue, knitting together communities. These sites
are also becoming major software development platforms, leading to the rapid rise
of social gaming companies such as Zynga and Playdom.

It is an open question how best to integrate social networking sites into soft-
ware development teams. The simplest approach is to have all team members use a
single social networking site, and use it for non-project oriented socializing. Sites
like Advogato [58] and Github [59] provide developer profiles. Advogato provides
the ability for developers to rate each others’ technical proficiency, creating a trust
network. Each user also has a weblog. Github provides automated status update
messages shown on a developer’s profile page based on activity in Github managed
software projects, and project-specific news feeds.

At present, sites like Advogato and Github only have affordances for the iden-
tity of each participant as a software engineer. This can be contrasted with sites like
Facebook and MySpace, where a broader range of tools make possible the integra-
tion and presentation of multiple identities for each participant, though with a bias
towards non-work identities. LinkedIn is another choice, clearly focused on busi-
ness networking and job seeking. Clearly there is a potential for tight integration
of software development activities with social networking sites. But how? One pos-
sibility is integration with Facebook. However, it seems a bit counter to the site’s
focus to have successful build and code checkin messages appearing in someone’s
wall. On the other hand, since sites like Github and Advogato have fewer social
affordancess they-feel-less-interesting-than Facebook. Even for the most hardcore
developers, there is more to life than code alone.
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1.7.3 Broader Participation in Design

Many forms of software have high costs for acquiring and learning the software,
leading to lock-in for its users. This is especially true for enterprise software
applications, where there can be substantial customization of the software for each
location. This leads to customer organizations having a need to deeply understand
product architecture and design, and to have some influence over specific aspects
of software evolution to accommodate their evolving needs. In current practice,
customers are consulted about requirements needs, which are then integrated into
a final set of requirements that drive the development of the next version of the
software. Customers are also usually participants in the testing process via the
preliminary use and examination of various beta releases. In the current model, cus-
tomers are engaged during requirements elicitation, but then become disengaged for
the requirements analysis, design, and coding phases, only to reconnect again for the
final phase of testing. This can be seen in Fig. 1.1 (earlier in this chapter), where the
stakeholders/users/customers row has engagement in requirements, and then again
in test.

Broadened participation by customers in the requirements, design, coding and
early testing phases would keep customers engaged during these middle stages,
allowing them to more actively ensure their direct needs are met. While open
source software development can be viewed as an extreme of what is being sug-
gested here, in many contexts broadening participation need not mean going all the
way to open source. Development organizations can have proprietary closed-source
models in which they still have substantial fine-grain engagement with customers
in which customers are directly engaged in the requirements, design, coding, and
testing process. Additionally, broadening participation does not necessarily mean
that customers would be given access to all source code, or input on all decisions.
Nevertheless, by increasing the participation of the direct end users of software
in its development, software engineers can reduce the risk that the final software
does not meet the needs of customer organizations. As in open source software, a
more broadly participative model can allow customers to fix those bugs that mostly
directly affect them, even if, from a global perspective, they are of low priority, and
hence unlikely to be fixed in traditional development. A participatory development
model could also permits customers to add new features, thereby better tailoring the
software to their needs.

A completely web-based software development environment would make it eas-
ier to broaden participation. In such an environment, it would be possible to give out-
siders direct access to limited parts of the source code (and other project artifacts).
With direct web-based access, external sites would not need to take source code off-
site in order to build and test it, reducing the risk of proprietary information release.

1.7.4 Capturing Rationale Argumentation

An-important-pait-of-a-software-project’s documentation is a record of the ratio-
nale behind major decisions concerning its architecture and design. As new team



1 Collaborative Software Engineering 21

members join a project over its multi-year evolution, an understanding of project
rationale makes it less likely that design assumptions and choices will be acci-
dentally violated. This, in turn, should result in less code decay. A recent study
[91] shows that engineers recognize the utility of documenting design rationale,
but that better tool support is needed to capture design choices and the reasons for
making them.

Technical design choices are often portrayed as being the outcome of a rational
decision making process in which an engineer carefully teases out the variables of
interest, gathers information, and then makes a reasoned tradeoff. What this model
does not reflect is the potential for disagreement among many experienced software
engineers on how to assess the importance of factors affecting a given design. One
of the strongest design criteria used in software engineering is design for change,
which inherently involves making predictions about the future. Clearly we do not yet
have a perfect crystal ball for peering into the future, and hence experienced engi-
neers naturally have differing opinions on which changes are likely to occur, and
how to accommodate them. As well, architectural choices often involve decisions
concerning which technical platform to choose (e.g., J2EE, Ruby on Rails, PHP,
etc.), requiring assessments about their present and future qualities. As a result, the
design process is not just an engineer making rational decisions from a set of facts,
but instead is a predictive process in which multiple engineers argue over current
facts and future potentials. Architecture and design are argumentative processes in
which engineers resolve differences of prediction and interpretation to develop mod-
els of the software system’s structure. Since only one vision of a system’s structure
will prevail, the process of architecture and design is simultaneously cooperative
and competitive.

Effective recording of a project’s rationale requires capturing the argumentation
structure used by engineers in their debates concerning the final system structure.
Outside of software engineering, there is growing interest in visual languages and
software systems that model the structure of arguments [52]. While models vary,
argumentation support systems generally record the question or point that is being
contested (argued about), statements that support or contest the main point, as well
as evidence that substantiates a particular statement. Argumentation structures are
generally hierarchical, permitting pro and con arguments to be made about indi-
vidual supporting statements under the main point. For example, a “con” argument
concerning the use of solar panels as the energy source for a project might state
that solar electric power is currently not competitive with existing coal-fired power
plants. A counter to that argument might state that while this is true of wholesale
costs, solar energy is competitive with peak retail electric costs in many markets.

Providing collaborative tools to support software engineers in the recording and
visualization of architecture and design argumentation structures would do a bet-
ter job of capturing the nuances and tradeoffs involved in creating large systems.
They would also better convey the assumptions that went into a particular decision,
making it easier for succeeding engineers to know when they can safely change a
system’s design. A persistent challenge in rationale management in software engi-
neering is keepingarguments.consistentlyJinked with the artifacts the affect (a form
of traceability management). A completely web-based development environment,
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by providing centralized control over development artifacts, can ease this problem
by making it possible to reliably perform link fix-up actions when an argument, or
linked artifact, are changed.

1.7.5 Using 3D Virtual Worlds

Software engineers have a long track record of integrating new communication
technologies into their development processes. Email, instant messaging, and web-
based applications are very commonly used in today’s projects to coordinate work
and be aware of whether other developers are currently active (present). As a
result, engineers would be expected to adopt emerging communication and presence
technologies if they offer advantages over current tools.

Networked collaborative 3D game worlds are one such emerging technology.
The past few years have witnessed the emergence of massively-multiplayer online
(MMO) games, the most popular being World of Warcraft (WoW). These games
support thousands of simultaneous players who interact in a shared virtual world.
Each player controls an avatar, a graphic representation of the player in the world.
Communication features supported by games include instant messaging, voice
chat, email-like message services, and presence information (seeing another active
player’s avatar).

Steve Dossick’s PhD dissertation [23] describes early work on the use of 3D
game environments to create a “Software Immersion Environment” in which project
artifacts are arranged in a physical 3D space, a form of virtual memory palace.
Only recently have MMOs like Second Life emerged that are not explicitly role-
playing game worlds, and hence are framed in a way that makes them potentially
usable for professional work. While Second Life’s focus on leisure activities makes
it unpalatable for all but the most adventurous of early adopters, these environ-
ments still hint at their potential for engineering collaboration. IBM’s Bluegrass
project [40] is a 3D virtual world explicitly designed to support software project
work. Goals of the work include improved awareness of the current status and
ongoing work of a project, and project brainstorming. The work exposes many
research issues in use of 3D virtual worlds for software project collaboration.
Representation of software artifacts in the 3D world is a thorny problem, as there
is no canonical way of spatially representing software. One possibility is to have
the virtual space represent the organization of the various software project arti-
facts including requirements, designs, code, test cases, and so on. Alternately, the
virtual space could be a form of idealized work environment, where everyone
has a nice, large office with window. Combinations of the two are also possible,
given the lack of real-world constraints. Virtual worlds typically have avatars that
walk about in the world, a slower way of navigating project artifacts than a tradi-
tional directory hierarchy. The explicit representation of a developer avatar raises
issues of appropriate representation of identity in the virtual space, an issue not
nearly so prevalent in email, instant messaging, and other text-based communication
technologies.
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The utility of adopting a 3D virtual world needs careful examination, as the bene-
fits of the technology need to clearly exceed the costs. It is currently unclear whether
this is true.

1.8 Fundamental Tensions

Underneath many of the situations present and advances made in collaborative soft-
ware engineering lie fundamental tensions that must be acknowledged. Optimizing
towards one aspect of collaboration support often involves tradeoffs with respect to
other aspects [84]. It is currently an open question as to where the theoretically opti-
mal level of support lies for a given situation, a state some have labeled congruence
[15]. Below, we identify some of the key tensions that exist.

What is good for the group may not be good for the individual. For an organi-
zation to effectively operate, certain individuals may be required to perform work
that is not optimal from their personal perspective. Ultimately, of course, collabora-
tive work must be optimized from an organization’s perspective. However, if such
optimization goes at the expense of the individuals, it is unlikely that a productive
process is achieved. Some kind of balance must be found in which individuals’ sat-
isfaction with their work is respected, yet at the same time organizational needs
are met. An example of when both can be achieved in parallel lies in the use of
awareness technologies with configuration management workspaces [20, 83], where
individuals are spared the merge problem, and organizations benefit from a higher
quality code base.

What is good in the long term may not be good right now. Ultimately, the goal
is to optimize the collaborative process as it plays out over time. This means that,
at times, work performed right now is suboptimal in the short term, but crucial to
later efficiencies. For instance, it is well-known that it is important to leave suffi-
cient information along with the artifacts produced for later re-interpretation and
re-consideration. However, such documentation is not always produced because it
is seen as superfluous work, and even when it is produced, keeping it in sync with
an ever-evolving code base is a tedious and arduous job.

Co-ordination needs are highly dynamic, but processes and tools in use tend to
be largely static. Because of the ever changing nature of software and its under-
lying requirements, exactly what co-ordination needs exist that give rise to actual
collaborations fluctuate [15]. But the processes and tools in use tend to be static in
nature, chosen once at the beginning of the project and rarely adjusted after. Some
tools have recognized this and provide different modes of collaboration e.g. [87],
but in general serious mismatches can emerge between co-ordination needs and
affordances.

Tools can, and should, only automate or support so much of collaborative prac-
tice. Ultimately, tools formalize and standardize work. Developers rely on tools
every day, but it has been observed that they also establish informal practices sur-
rounding_the formally supported.processes [80]. These informal practices are a
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crucial part of any effective development project. The tension, then, is how much
to automate of the “standard” practices and how much to leave in the developers
hands to enable them to own part of the process and flexibly be able to perform their
work.

Sharing is good, but too much sharing is not. Much work must be performed in
isolated workspaces of sorts to protect ongoing efforts from other ongoing efforts.
The canonical example is each developer making their own changes in their own
workspace, so they can test their changes in isolation and without interference by
changes from other developers that may still be partial in nature. To overcome the
issue of insulation becoming isolation, information about work must be shared with
others. Such sharing can be beneficial, but must be carefully weighted with the fact
that too much sharing leads to information overload, causing developers to ignore
the information brought to them. Once again, a balance must be struck.

Record keeping is good, but it could be misused. The canonical example is the
manager judging performance via lines of code contributed to a code base; this is
a fundamentally flawed metric. With a broad set of new collaborative tools relying
on and visualizing key data regarding individuals’ practices, choices, and results,
misuse of such data could lead to serious problems.

The above represents some of the key considerations that must be kept in mind
when one attempts to interpret collaborative software engineering or provide novel
solutions. In this book, we will see these tensions come back repeatedly, some-
times explicitly recognized as such, at other times providing implicit motivations
and design constraints. These tensions will persist for the time and ages, and always
govern how we approach collaboration.

1.9 Conclusions

After 35 years of research and tool making to foster collaboration in software engi-
neering, we now have useful collections of tools, work practises, and understandings
to guide multi-person software development activity. Indeed, internet-based collab-
oration tools and practices directly led to the creation of a globally distributed, open
source software ecosystem over the past 20 years, accelerating in the last 10. Clearly,
progress has been made in supporting collaborative software development.

Despite this progress, our understanding of collaboration in software engineering
is still imperfect, and there is room for improvement in many arenas. A fundamental
stumbling block is the lack of established metrics for quantitatively assessing col-
laboration in software projects. This, in turn, makes it challenging to know when a
new collaboration tool has made an improvement, or when a new tool will make a
difference. For example, it was only in hindsight that SourceForge (and similar web-
based “forge” systems) was viewed as a major advance in software collaboration
infrastructure, and not simply the integration of several pre-existing tools.

There are many current challenges in collaborative software engineering
research. These include:
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o Understanding how to adapt new communications media for collaboration. The
computer is a rich nursery for new types of media. Social networking sites and
3D virtual worlds are two kinds of computational media that show potential for
improving software project collaboration.

e Reducing the effects of distance on remote collaboration. Adding distance
between people makes it harder to collaborate — is it possible to remove the
negative effects of distance with superior tool support?

o Improve shared understanding of artifacts. Much work in software projects sur-
rounds the removal of ambiguity in natural language and semi-formal artifacts.
Improved collaboration support could assist this process of identifying ambigu-
ity and developing shared understanding. Additionally, there is still room for
improvement in the ways developers become aware of the work being performed
by others.

e Improved techniques for leveraging the expertise of others. A persistent challenge
in software engineering collaboration is identifying people within an organization
that have expertise relevant to a current problem or task [27].

e Improved ways of finding and removing errors. Improving the collaboration
between and among users and developers in identifying and fixing errors could
help reduce software bugs, and improve the experience of using software.

e Better understanding of how to motivate people to work together effectively. As
is mentioned in the previous section, there is a tension between individual and
group goals. Providing sufficient rewards to encourage project collaboration is
important, and not well understood.

e Improve and integrate software project management, software product devel-
opment, and software engineering processes. This goal is often hampered by a
great variety of methods and tools in the individual disciplines and limited inte-
gration methodologies between project management, product development, and
engineering processes. An effective collaborative environment must inject basic
elements of project management, including activity awareness, task allocation,
and risk management, directly into the software engineering process.

The chapters in this volume address these issues, and more. In so doing, they
deepen our understanding of collaboration in software engineering, and highlight
the potential for new tools, and new ways of working together to create software
projects, large and small.
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Part I
Characterizing Collaborative
Software Engineering

Ivan Mistrik

Effective collaboration in software engineering is very important and yet increas-
ingly complicated by trends that increase complexity of dependencies between
software development teams and organizations [2]. These trends include the global-
ization of software engineering, leveraging the relationships between requirements
and people, the adoption of software product lines, practices in agile software
development, and applications of ontologies.

Software engineering collaboration has multiple goals and means spanning the
entire lifecycle of development [7]:

Establish the scope and capabilities of a project. Engineers must work with the
users and funding sources (stakeholders) of a software project to describe what it
should do at both a high level, and at the level of detailed requirements. The form of
this collaboration can have profound impact on a project, ranging from the up-front
negotiation of the waterfall model, to the iterative style of evolutionary prototyping
[5].

Drive convergence towards a final architecture and design. System architects
and designers must negotiate, create alliances, and engage domain experts to ensure
convergence on single system architecture and design [3].

Manage dependencies among activities, artifacts, and organizations [4]. This
encompasses a wide range of collaborative activities, including typical management
tasks of subdividing work into tasks, ordering them, then monitoring, assessing, and
controlling the plan of activities. Modularization decisions also affect dependencies.

Reduce dependencies among engineers. An important mechanism for managing
dependencies is to reduce them where possible, thereby reducing the need for col-
laboration. Modularization decisions frequently follow organizational boundaries
[6] a mechanism for reducing cross-organization co-ordination. Software configura-
tion management systems permit developers to work in per-developer workspaces,
thereby isolating their changes from others, and reducing the number of change
dependencies among developers. With workspaces, developers no longer need to
wait for all developers to finish their current changes before compiling.

Identify, record and resolve errors. Errors and ambiguities are possible in all soft-
ware artifacts, and many approaches have been developed to find and record their
existence. Among the collaborative techniques are inspections and reviews, where
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many people are brought together so that their multiple perspectives can identify
errors, and their questions can surface ambiguities. Testing, where one group cre-
ates tests to uncover errors in software developed by others is another collaborative
error finding technique. Users of software also collaborate in the identification of
errors, whether in explicit beta testing programs, or through normal use, when they
submit bug reports. Bug tracking (issue management) systems permit engineers to
record problems, as well as manage the process of resolving them.

Record organizational memory. In any long running collaborative project, people
may join and leave. Part of the work of collaboration is recording what people know,
so that project participants can learn this knowledge now, and in the future [1]. SCM
change logs are one form of organizational memory in software projects, as are
project repositories of documentation. Process models also record organizational
memory, describing best practices for how to develop software.

Chapters in this part of the book are reporting on advances on some issues
mentioned above.

Chapter 2 “Global Software Engineering: A Software Process Approach” by
Ita Richardson, Valentine Casey, John Burton and Fergal McCaffery thesis is that
global software engineering factors should be included in software process models
to ensure their continued usefulness in global organizations. They have devel-
oped a software process, Global Teaming, which includes specific practices and
sub-practices. The purpose is to ensure that requirements for successful global
software engineering are stipulated so that organizations can ensure successful
implementation of global software engineering.

Chapter 3 “Requirements-Driven Collaboration: Leveraging the Invisible Re-
lationships between Requirements and People” by Daniela Damian, Irwin Kwan
and Sabrina Marczak discusses an approach to study requirements-driven collab-
oration, which is the collaboration during the development and management of
requirements. The approach uses the construct of a requirement-centric social net-
work to represent the membership and relationships among members working on
a requirement and its associated downstream artifacts and a number of social net-
work analysis techniques to study collaboration aspects such as communication,
awareness, and the alignment of technical dependencies driven by development of
requirements and social interactions. To demonstrate their approach, the authors
describe insights from a case study that examines requirements-driven collaboration
within an industrial, globally-distributed software team.

Chapter 4 “Softwares Product Lines, Global Development and Ecosystems:
Collaboration in Software Engineering” by Jan Bosch and Petra Bosch-Sijtsema
discusses problems of ineffective collaboration and success-factors of five
approaches to collaboration in large-scale software engineering. The approaches,
i.e., integration-oriented software engineering, release groupings, release trains,
independent deployment and open ecosystems, increasingly facilitate composition-
ality of the system parts.

Chapter 5 “Collaboration, Communication and Co-ordination in Agile Software
Development Practice” by Hugh Robinson and Helen Sharp explores in detail, the
natureof collaboration,.communication.and co-ordination involved in agile software
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development. It focuses specifically on the collaborative activities of pairing and
customer collaboration, and the co-ordinating role of two key physical artifacts: the
story card and the Wall. The research explicates how this social activity is related to
and embodied in the associated technical practice of developing working code.

Chapter 6 “Applications of Ontologies in Collaborative Software Development”
by Hans-Jorg Happel, Walid Maalej and Stefan Seedorf discusses the application of
ontologies to CSD. Ontologies, which are models that capture a shared understand-
ing of a specific domain, provide key benefits which address several CSD issues. The
chapter contains a comprehensive set of application scenarios for ontologies in CSD.
In addition, the authors describe Semantic Wikis, Semantic Integrated Development
Environments (IDEs) and a Software Engineering Semantic Web as technological
backbones.

References

1. Ackerman MS, McDonald DW (2000) Collaborative support for informal information in
collective memory systems. Information Systems Frontiers 2(3/4): 333-347.

2. Bosch J, Bosch-Sijtsema P (2009) Softwares product lines, global development and ecosys-
tems: Collaboration in software engineering. In: Mistrik I, Grundy J, Hoek Avd, Whitehead J,
Finkelstein A (Eds.) Collaborative Software Engineering. New York: Springer.

3. Grinter R (1999) Systems architecture: Product designing and social engineering. ACM
Conference on Work Activities Co-ordination and Collaboration (WACC’99), pp. 11-18.

4. Malone TW, Crowston K (1994) The interdisciplinary study of co-ordination. ACM Computing
Surveys 26(1): 87-119.

5. McConnell (1996) Lifecycle planning. In: Rapid Development: Taming Wild Software
Schedules. Redmond, WA: Microsoft Press.

6. Sommerville I (2007) Software Engineering, 8th edn. Harlow: Pearson Education Limited.

7. Whitehead EJ (2007) Collaboration in software engineering: A roadmap. Future of Software
Engineering (FOSE 2007), 20-26 May 2007, Minneapolis, MN.

ol LElUMN Zyl_i.lbl




Chapter 2
Global Software Engineering: A Software
Process Approach

Ita Richardson, Valentine Casey, John Burton, and Fergal McCaffery

Abstract Our research has shown that many companies are struggling with the suc-
cessful implementation of global software engineering, due to temporal, cultural and
geographical distance, which causes a range of factors to come into play. For exam-
ple, cultural, project management and communication difficulties continually cause
problems for software engineers and project managers. While the implementation of
efficient software processes can be used to improve the quality of the software prod-
uct, published software process models do not cater explicitly for the recent growth
in global software engineering. Our thesis is that global software engineering factors
should be included in software process models to ensure their continued usefulness
in global organisations. Based on extensive global software engineering research,
we have developed a software process, Global Teaming, which includes specific
practices and sub-practices. The purpose is to ensure that requirements for suc-
cessful global software engineering are stipulated so that organisations can ensure
successful implementation of global software engineering.

2.1 Introduction

In today’s global economy, increasing numbers of software engineers are
expected to operate in a distributed environment [32]. In this environment, geo-
graphical distance introduces physical separation between team members and
management [6], temporal distance hinders and limits opportunities for direct
contact and cooperation [1], and cultural distance negatively impacts on the
level of understanding and appreciation of the activities and efforts of remote
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colleagues and teams [52]. Therefore, Global Software Engineering (GSE)' has
complexities over and above those experienced in local software development [7,
22, 31]. While process models such as Capability Maturity Model Integration
(CMMI®) [19] and IEC/ISO15504 (International Standards [45] operate success-
fully in local environments, they do not explicitly provide for the impact of these
complexities.

In this chapter, we discuss our research into virtual teams. This has demonstrated
that project management must change in the global development environment.
Therefore, we developed a project management process area, Global Teaming (GT),
which details specific practices for use when organisations are implementing GSE.

2.2 Software Process

Humphrey [34] defines a software process as “the set of tools, methods and prac-
tices we use to produce a software product”. Paulk et al. [48] expand this definition
to “a set of activities, methods, practices and transformations that people use to
develop and maintain software and the associated products”. Organisations improve
their software processes to improve the quality of their product. While there have
been arguments that implementing planned processes decrease rather than increase
the efficiency of the software development process [26, 37, 39] there is also evi-
dence that there have been increases in productivity and efficiency due to the
implementation of planned processes [3, 5, 27, 35, 56]. While we recognise that
there are many valid reasons for not implementing planned process models such
as CMMI®) and ISO/IEC 15504, we also recognise that there are efficiencies to
be gained in doing so, and, in particular, there are markets which require planned
processes to be in place. For example, in industries such as the Medical Device
industry, who are regulated by the Food and Drugs Administration (FDA), and the
Automotive industry, who follow Automotive SPICE, planned processes are still
required.

2.3 Research Project

The authors completed a study which identified 25 factors to be taken into account
when setting up virtual teams in a global environment. Based on this outcome,
we developed a software process area, Global Teaming, similar to the structure of
CMML. This can be used as a supporting mechanism for the implementation of GSE.

N variety of terms exist: Distributed Software Development, (DSD), Global Software
Development (GSD), or Global Software Engineering (GSE). We will use the term GSE this
chapter.



2 Global Software Engineering 37
2.3.1 Case Studies into GSE

Three case studies were undertaken over a 9 year period in the area into GSE. The
first case study was carried out in an Irish company who implemented a strategy
to expand their organization’s market share by the establishment of local offsite
virtual software development teams (Irish Computing Solutions?). Prior to imple-
menting this policy the company operated collocated teams based in the capital
(Dublin) who worked exclusively on the development of financial and telecommu-
nications software. The organization also had a software development centre located
150 miles from Dublin, which was involved in general application development and
maintenance and had lower labour costs. The objective was to leverage staff at both
locations and capitalize on the cost advantage offered. A group of twelve offsite
engineers were selected and were provided with basic training in the required tech-
nology and process. Two virtual teams were established and consisted of two sets of
six offsite engineers who were partnered with three experienced onsite engineers
based in Dublin. Considerable effort was put into providing the communication
infrastructure, process and support for both virtual teams. A key objective of this
approach was that the onsite engineers would mentor the inexperienced offsite staff
and provide effective knowledge transfer [17].

The second case focused on offshore/nearshore software development [28],
where we studied a partnership between a large U.S. based financial organization,
Stock Exchange Trading Inc., and an Irish division of a U.S. multinational company
Software Future Technologies. While the U.S. and Irish based sites were geograph-
ically distant, they were considered linguistically and culturally nearshore [28, 53].
The companies established virtual teams to develop and maintain bespoke financial
software. Stock Exchange Trading Inc. was the senior partner in this relationship
and had an on-going requirement for development and maintenance. An unantic-
ipated and urgent requirement arose for the development of new software during
the initial stage of establishing the virtual teams. To address this need 70% of the
Irish team members moved to the U.S., for a period of 1 year to work on collo-
cated teams with their Stock Exchange Trading colleagues. This proved to be a
very effective strategy and both groups operated very successfully while collocated
within what were to eventually become their virtual teams. It was only when the
Irish team members returned to Ireland and the virtual teams were established that
serious problems arose. [10, 11, 17].

The third case study centred on offshore virtual team software testing and was
undertaken in the Irish division of a large U.S. multinational, Computing World
International, who had been operating in Ireland for over 20 years. This division
had been very successful and had expanded considerably in that time, during which
a large percentage of the projects undertaken had been offshored from their U.S.
parent. Therefore, the Irish staff and management were very experienced in having

2 Company names are all pseudonyms.
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projects offshored to them. Two years prior to undertaking this case study the organi-
zation’s corporate strategy changed and they initiated a policy of establishing virtual
testing teams. The objective of this policy was to leverage the technical ability of
their Irish staff with the competitive salary levels of their Malaysian test engineers.
When this research commenced four virtual testing teams were in operation between
the Irish and Malaysian divisions. Some teams were established for over a year and
a half while others had only been in operation for a number of months. This case
study focused on two embedded units of analysis. One was a virtual testing team
with members located in Ireland and Malaysia which had been in operation for a
period of eighteen months. The second was a virtual team with a similar makeup,
but had been established for just over six months [11-13, 18].

2.3.2 Research Methodology

The research methodology employed in the first and second case studies was the
action research five-phase cyclical process based approach [2, 58]. Action research
entails the analysis of the direct intervention of the researcher. This methodology
was selected as the most appropriate for both case studies as one of the authors held
a management role in the respective organizations. This approach allowed us to
leverage the research opportunities while maintaining the required level of objectiv-
ity. For the third case study, the authors had the opportunity to undertake extensive
on site research. We selected and implemented a Yin-based embedded case study
[60] which incorporated a Strauss and Corbin grounded theory [57] approach to
data gathering and analysis. The GSE research which we carried out resulted in
the definition of 25 factors which affect the effective implementation of GSE (see
Section 2.4.2).

2.3.3 Development of the Global Teaming Software Process Area

Following the definition of these 25 factors, we studied existing software process
models to understand how they have implemented GSE, and observe that they do
not explicitly focus on its implementation. Given the substantial growth of GSE,
we considered this a weakness, and have recognised the importance of presenting
explicitly defined processes to support GSE implementation. Through a gap analysis
between CMMI(R) and the findings from our case studies outlined in Section 2.3.1,
we observed that the definition of a GSE process to support the implementation
of virtual teams is missing. Therefore we have identified a specific process area,
Global Teaming (GT), establishing specific goals and sub-practices. While we have
structured these to be similar to the CMMI®) model, the implementation of the
Global Teaming process area does not require CMMI®) implementation. Rather
it can be used as a process which organisations can implement when establishing
global software teams.
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2.4 Global Software Engineering

The growth of GSE in recent years requires that many software engineers must col-
laborate over geographical, temporal and/or cultural distance, collectively termed as
“global distance™ [6, 50]. The advent of this strategy has been facilitated by fac-
tors which include the development of the Internet, increased use of e-mail and low
cost international telecommunication infrastructure [44]. In addition, the availability
of highly skilled software engineers in low cost locations such as Eastern Europe,
Latin America and the Far East [20], coupled with the desire to cut costs and avail
of the benefits of establishing operations close to emerging markets, have all con-
tributed to the selection of this strategy. In some cases, application development and
maintenance have been outsourced to remote third party organisations. In others,
organisations have set up subsidiaries in low cost economies and offshored part or
all of their software development to these locations [8, 59]

2.4.1 Virtual Teams

Our initial research focus was on that of the operation of virtual teams. The vir-
tual team has been described as the core building block of the virtual organisation
[23, 36, 42]. A traditional team is defined as a social group of individuals who are
collocated and interdependent in their tasks. The group undertakes and coordinates
their activities to achieve common goals and share responsibility for outcomes [49].
Virtual teams have the same goals and objectives as traditional teams and interact
through interdependent tasks, but operate across time, geographical location and
organisational boundaries linked by communication technologies [40]. They nor-
mally operate in a multicultural and multilingual environment which may cross
organisational boundaries [24]. Communication between virtual team members is
normally electronic and asynchronous with limited opportunities for synchronous
contact [40]. The team may function on a permanent or temporary basis which is
contingent on the demands of the business environment in which it is operating.
Their overall objective is to function as a single team, with the same goals as if they
were in a collocated situation.

However, GSE is not without its inherent business related risks [38]. This has par-
ticular relevance when organisational boundaries are crossed. There can be aspects
of a software application that provides competitive advantage to the organisation
that are having it developed [38]. In this case, they may not wish to grant access to
such information to an outside organisation, even where they are temporally part-
nered with them. To prevent this, the implementation of a virtual team strategy can
be employed to allow the partitioning of development across sites. The activities

3We use the term ‘global distance’ when we discuss geographical, temporal and cultural distance
collectively.
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that need to remain confidential are undertaken by the organisation’s own virtual
team members, whereas related activities are undertaken by external remote team
colleagues.

The implementation of a virtual team strategy can simply be a cost based deci-
sion. This can be achieved by combining the technical skills and experience of staff
located in a high-cost centre with engineers in a low-cost location. If the goal is a
short-term strategy, then it may be used simply as a knowledge transfer exercise. If,
on the other hand, it is a long-term objective, sustained support will be required for
team members at all locations.

While the term “distributed team” simply states the geographical location of the
team members in the same organisation, the important difference between a virtual
team and a distributed team can be considered as the interdependence of tasks. In
this context, all virtual teams are distributed, but not all distributed teams are vir-
tual. It is possible to have a team which is geographically distributed, but where
the work has been partitioned in such a manner that there is no interdependence of
tasks between team members. In these circumstances this team is distributed, but not
virtual. We are proposing a global teaming process for global teams where there is
clear interdependence of tasks between team members at both locations i.e. virtual
teams.

2.4.2 Project Management Challenges

Within such virtual teams, organisations still face the regular collocated project
management challenges of co-ordination, communication and cooperation [30, 43].

Global distance introduces its own barriers and complexities which negatively
impacts these project management challenges [7, 22, 31, 46]. Our research has
demonstrated that there are 25 factors which come into play during the implemen-
tation of global projects [10, 11, 18]. These need to be explicitly considered when
implementing a GSE strategy. The factors are listed in Table 2.1.

In addition, these factors often have a compounding effect on each other, fur-
ther increasing the possibility of negative impact. For example, skills management
is complicated when there are language difficulties across global distance. In addi-
tion, not only should the factors we identified by considered, but the collaboration
models used need to be considered. Research by Smite [55] has shown that, in

Table 2.1 Global software development factors

Communication Skills management Language Tools Fear

Communication tools Knowledge transfer Motivation Culture Trust

Temporal issues Defined roles and Technical support ~ Teamness True cost
responsibilities

Effective partitioning Team selection Coordination Visibility Reporting

Project management Risk management Cooperation Information Process




2 Global Software Engineering 41

Partner
—{ Systems Analysis Design Codin Testin
Supplier i U ‘ < }7‘ < H -

Partner ’ Systems Analysis ‘ ‘ Design ‘
Suppler

- ‘ Coding ‘
Supplier

Partner
‘1, Systems Analysis
Supplier ’

Fig. 2.1 GSE distribution of life-cycle stages in 4 cases [55]

Design ‘ ’ Coding ‘ ’ Testing

practice, the variety of collaboration models used where parts of the life-cycle are
shared between groups [6, 29], is indeed quite substantial. She developed 19 models,
four of which are shown in Fig. 2.1. For example, systems analysis, design and test-
ing may be undertaken in one country while coding is undertaken in another. Smite’s
work focused on four stages of the life-cycle in two-site projects, and it is inevitable
that examining more stages in multiple-site projects would have many more models
associated with them. Consequently, collaboration by software engineering teams
across global distance must be managed correctly to ensure successful develop-
ment and implementation of software projects [13, 38], and Global Teaming will
support this.

2.4.3 Global Teaming — A GSE Process Area

GSE requires cognisance to be taken of the cultural, social, geographical and tempo-
ral differences which are experienced and can cause difficulties when implementing
a GSE strategy [6, 38] Our research has demonstrated that there are 25 factors which
should be taken into account when teams operate in a global environment [ 18], many
of which have been corroborated by other researchers [6, 22, 25, 30]. However,
despite the increase in GSE internationally, software process models do not explic-
itly discuss GSE and factors that affect it. The Global Teaming process area has
been developed as an initial step to fill this gap.

Global Teaming has two specific goals (SG), each of which has specific practices
(SP) and sub-practices. These are as follows:

e SG1: Define Global Project Management
SP1.1 Global Task Management:
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Determine team and organisational structure between locations.
Determine the approach to task allocation between locations.

SP 1.2 Knowledge and Skills:

Identify business competencies required by global team members in
each location.
Identify the cultural requirements of each local sub-team.
Identify communication skills for GSE.
Establish relevant criteria for training.
SP 1.3 Global Project Management:

Identify GSE project management tasks.

Assign tasks to appropriate team members.

Ensure awareness of cultural profiles by project managers.

Establish cooperation and coordination procedures between loca-
tions.

Establish reporting procedures between locations.

Establish a risk management risk management strategy.

e SG2: Define Management between Locations
SP 2.1 Operating procedures:

Define how conflicts and differences of opinion between locations are
addressed and resolved.

Implement a communication strategy for the team.

Establish communication interface points between the team members.

Implement strategy for conducting meetings between locations.

SP 2.2 Collaboration between locations:

Identify common goals, objectives and rewards

Collaboratively establish and maintain the work product owner-
ship boundaries among interfacing locations within the project or
organisation.

Collaboratively establish and maintain interfaces and processes
among interfacing locations for the exchange of inputs, outputs,
or work products.

Collaboratively develop, communicate and distribute among interfac-
ing teams the commitment lists and work plans that are related to
the work product or team interfaces.

2.5 Global Teaming Process Area

In the following sections we list the sub-practices included in the Global Teaming
Process Area. We then discuss our rationale for including each sub-practice,
which is based on our research to date within GSE and on the research of others
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2.5.1 Global Teaming Specific Goal 1: Define Global
Project Management

Within the Global Teaming process area, specific goal 1 recognises that global
project management, while including tasks that would be expected within collocated
project management, must also encompass tasks that exist because of the existence
of their virtual software engineering team.

2.5.1.1 SP 1.1 Global Task Management (1): Determine Team
and Organisational Structure Between Locations

In the software industry, the overall objective of a team structure is to facilitate
the successful management, coordination and operation of the team so that they
produce specific software artifacts. Implementing such a structure is an important
factor for the success of a GSE strategy [38]. To do this, the organisation should
create roles, relationships and rules which can facilitate coordination and control
over geographical, temporal and cultural distance.

In general, global teams are larger than collocated teams. Overall team size can
directly impact on the effective operation of the virtual team [4], as does the number
of members situated at specific geographical locations. A concern is that team mem-
bers may feel that if larger groups are located in one or more remote geographical
sites all the work may be centralized in these locations. This can lead to feelings
of alienation and fear for the future of their jobs, particularly for team members
based at the location from which the work has been outsourced [13]. Furthermore,
management at one location may have responsibility for both their local and remote
locations. In this case, a danger is that the manager may give undue priority to
their divisional or organisational needs, rather than the requirements of the full
global team and the specific project on which they are working. The global team
should be structured and their operation monitored in such a way that minimises
this risk.

The team structure should also cater for the possibility of dual reporting to man-
agement at more than one location, particularly where there the team structure is
cross divisional or multi-organisational. To address these issues, the organizational
and team structure must ensure that the supervision, support and information needs
of all team members are met regardless of location. Documenting this structure
and providing access to this information is important as this allows staff to clearly
understand everyone’s roles and responsibilities within the project [38].

2.5.1.2 SP 1.1 Global Task Management (2): Determine the Approach
to task Allocation Between Locations

The objective of this sub-practice is to distribute work so that the advantages of
GSE are leveraged and the negative factors which are inherent to its operation
are minimised. Effective allocation should be based on the organisation’s require-
ments..For.example,.if proximity.to.matket is the reason that a development team
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is located in a particular country, then customer-related tasks should be allocated
to that team. Tasks which require frequent communication between groups should
be retained within collocated teams. However, GSE teams are often subdivided into
work modules, so that different locations undertake different development stages
of the life-cycle. As illustrated in Fig. 2.1, this subdivision can vary widely. What
is important is that management clearly define which stages are carried out within
each local sub-team, and that the core competencies for those development stages
are identified.

2.5.1.3 SP 1.2 Knowledge and Skills (1): Identify Business Competencies
Required by Global Team Members in Each Location

There can be a variety of reasons for businesses implementing GSE strategies.
Probably the most commonly quoted is the cost advantage — where companies often
integrate lower cost labour with higher cost labour. However, there are other busi-
ness reasons for implementing GSE, including that a team in another country allows
access to a larger customer base in that country. Because of this, the global team
needs to have an understanding of that customer base and consequently, the busi-
ness functions within that country. An example would be where the local team is
required to know about the fiscal policy within their home country.

2.5.1.4 SP 1.2 Knowledge and Skills (2): Identify the Cultural Requirements
of Each Local Sub-team

There have been many difficulties experienced by GSE teams due to lack of under-
standing of the socio-cultural requirements of the sub-teams. Culture normally
remains below everyday consciousness and only becomes obvious when it is con-
trasted with different cultural norms, values and assumptions as in GSE teams.
Within software development teams, cultural differences can give rise to misunder-
standings [25, 30]. To address the issues related to cultural diversity, team members
must have a basic understanding of each others’ national culture. Important factors
which seem to have most effect are [38]:

1. Some cultures do not promote individual responsibility and accountability.
2. Some cultures accept most suggestions without much discussion.

We have identified that training in culture is important, so that each sub-team can
understand each other. Furthermore, face-to-face meetings are very useful when and
where possible. Having individuals visit locations for extended periods can also be
a successful strategy and should be fully leveraged at every possible opportunity.

2.5.1.5 SP 1.2 Knowledge and SKkills (3): Identify Communication
Skills for GSE

Individual team members are now required to be able to communicate and work with
people.who,they.donotknow,and whosecultures they may not understand. They are
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expected to use communication tools such as instant messaging, audio conferencing
and video conferencing for which they need to develop a new etiquette. Policies
should be put in place to support these new requirements. They may also be required
to work across different time zones, and impositions on their personal time may also
occur. Furthermore, a common practice which should be avoided is that those at an
outsourcing or offshoring location schedule all conference calls to suit their local
teams’ times. This results in permanently inconveniencing remote staff and this adds
further to their level of dissatisfaction [7]. This also increases the probability that
overworked, trained and competent staff will seek positions elsewhere and leave the
organisation.

2.5.1.6 SP 1.2 Knowledge and SKkills (4): Establish Relevant Criteria
for Training Teams

GSE cannot succeed without effective knowledge transfer and training [30]. While
remote team members usually have the required academic background to undertake
their respective roles and responsibilities, they may lack domain specific knowledge
and experience. To be effective, an evaluation of training needs should be car-
ried out, and cultural and linguistic issues considered. Those implementing training
should be aware that training practices which have been successfully implemented
in a collocated situation may not be successful in a global environment. The most
effective method for the provision of global team training is onsite and face-to-face
training [38, 41]. This ensures that the training needs of the team members can be
directly assessed and provision made to address their specific requirements.

2.5.1.7 SP 1.3 Global Project Management (1): Identify GSE Project
Management Tasks

Global project managers are required to do the tasks that are expected of a local
project manager, but they must also plan, facilitate, implement and monitor global
communication and coordination related activities with effective policies and proce-
dures. In the ideal situation, the project manager will have been actively involved in
the recruitment and selection of team members. In the absence of this, they should
be supported by the provision of as much information as possible on the technical
and professional experience of potential and existing team members. When teams
are in place, they may need to request additional information about individuals, and
also, when project details are reported, spend more time understanding how individ-
uals contributed to that project. As they will often be based remotely from their team
members, they may not have the opportunity to see their contribution first-hand. The
project manager needs to build up their knowledge about each team member.

We have seen, in our research, that in some cases, competent people in the
distributed location, often agree to undertake unrealistic amounts of additional
work [13]. This can be attributed to their revering of hierarchy and their reluc-
tance for cultural reasons to say no to requests from a superior [6, 33]. This can
have_ serious. implications.for.the individuals involved and is only sustainable in
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the short term given the level of effort required. Therefore, it is important that
the global project manager is aware of this situation and tries to prevent it from
happening.

2.5.1.8 SP 1.3 Global Project Management (2): Assign Tasks to Appropriate
Team Members

The effective partitioning and allocation of work across the GSE team must be
addressed. The objective should be to distribute work so that the advantages of
GSE are leveraged and the negative factors which are inherent to its operation are
minimised. This can be achieved by implementing one or more of three different
approaches to task allocation [6]:

e Modularisation
e Phased-based approach
e Integrated approach

Modularisation, which entails partitioning of work, is a key concept which
supports effective organisation and management in globally distributed develop-
ment and virtual team operation. Modularisation is based on the work of Parnas
(1972) who defined it as: “In this context ‘module’ is considered to be a respon-
sibility rather than a subprogram” [47]. In the GSE team environment, this can
be achieved by the effective partitioning of work into modules which have a
well defined functional whole [6]. If done successfully, independent or semi-
independent units of the project can be undertaken entirely at specific geographical
locations, limiting the need for communication and cooperation between team
members.

With a phase-based approach discrete phases in the development cycle can be
undertaken at different locations. This approach can be implemented if phases are
relatively independent. It is also required that those who carry out the work under-
stand what is required at each specific stage. The phase-based approach can reduce
dependence between locations.

The integrated, or “follow the sun” approach endeavours to leverage the temporal
difference between global team members’ geographical locations. Unfinished work
is passed between different locations to fully utilise staff and tools [6], facilitating
24 h a day development and achieving development and testing cycle times which
are not possible when implementing a collocated team based strategy [51]. This
approach requires high dependence between locations.

2.5.1.9 SP 1.3 Global Project Management (3): Ensure Awareness of Cultural
Profiles by Project Managers

In both co-located and GSE teams, team members should have the knowledge and
skills to carry out the projects which have been assigned. However, in the case of
global teams,.it.is.also.important that project managers understand that culture and
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its understanding (or lack of) can play a major part in the success of a project. This
includes religion, gender and power distance [14].

Some organisations consider that their corporate socializing process is adequate
to address the cultural issues which arise when managing a GSE team. The real-
ity is that, in a situation where there are major differences between corporate and
national cultural norms, this is generally not the case, and often, national cultural
differences should be identified and communicated to the management and team
members [17]. This can be achieved by providing specific cultural training which
gives all team members an opportunity to learn and understand about each other’s
culture. Training should address national, religious and relevant ethnic issues which
have the potential of negatively impacting on the operation of the virtual team and,
ultimately, all team members should understand acceptable and unacceptable forms
of behaviour. Cultural training should be tailored to team member’s specific needs
and location [13].

There are often gender issues which need to be dealt with. In some Eastern cul-
tures the female role is seen as subservient to that of the male. In such cultures,
attitudes to gender, not normally acceptable in Western countries, are still preva-
lent and accepted as the norm. This attitude to women is reinforced by religious
belief and in some countries, by the legal system. These attitudes to gender have
specific implications for managing virtual teams. Males from these cultures may
have problems reporting to female team leaders or managers. In one case during our
primary research, a male project manager from the Far East would not work with a
female project manager from Ireland, on religious grounds, and he was subsequently
removed from the project [18]. This illustrates that project managers, while ensuring
that employee’s legal rights are upheld, should also ensure that cultural profiles for
teams are also established. Remote female team members may need to be addressed
in a particular way. Furthermore, there is a need for management and staff to show
respect for the gender-related cultural values of all colleagues so that they do not
negatively impact on the operation of the team.

2.5.1.10 SP 1.3 Global Project Management (4): Establish Cooperation
and Coordination Procedures Between Locations

Teamwork is a cooperative activity, and global distance negatively impacts the level
of cooperation that takes place between global team colleagues [13, 32]. The project
manager must support the establishment and development of effective cooperation
within the virtual team. They can implement tools, processes and technology to sup-
port cooperation but must also ensure that team members are motivated to use these
tools. Furthermore, project managers must be aware of, and take specific measures
to address potential problems before they arise. When specific problems are identi-
fied, the project manager should implement informed and appropriate measures to
address them.

Coordination is another key activity which is negatively impacted by global dis-
tance [8,.32]..Effective.coordination.ensures that adequate planning is carried out
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and the required resources are provided to undertake GSE, including suitable infras-
tructure, processes and management procedures. Achievable milestones should be
planned and agreed. In addition, projects should be monitored with reference to
costs, time, productivity, quality and risk.

2.5.1.11 SP 1.3 Global Project Management (5): Establish Reporting
Procedures Between Locations

The project manager needs to be aware of how the project is progressing and
therefore needs to establish regular reporting. In the collocated situation, informal
reporting can keep management up-to-date with progress, but in the global team,
there is rarely the opportunity for those informal updates. Implementing formal
reporting for what often should be an “informal” situation can make structures and
interactions between management and team members more rigid than would be pre-
ferred. However, without implementing such reporting structures, there is a danger
that the remote team, given their cultural background, may not report correctly.

Furthermore, when coming from a Western background, in some Far Eastern
cultures requests and instructions are accepted without comment or discussion. To
disagree is considered impolite and the objective is to avoid conflict at all costs
[38]. In these societies, organisational hierarchy is also an important issue and is
adhered to strictly. Often, there is no discussion as to whether a request is reasonable
or not, and global team members may take on tasks which they are unprepared
for technically. Requests must come from the correct authority figure and are then
carried out without question or comment.

2.5.1.12 SP 1.3 Global Project Management (6): Establish a Risk
Management Strategy

Risk management should be incorporated into all well planned software projects.
All software projects have pervasive risks which include issues such as misunder-
standing requirements, feature volatility, unrealistic schedules, budgetary over runs
and personnel associated problems [38]. Globally distributed virtual team projects
carry additional high risk exposure as the risks associated with managing a cultur-
ally diverse virtual team are often not understood, underestimated, or in some cases,
not even considered [30] as discussed in previous sections.

Another culture-related risk to virtual team project management is that there is
often a lack of information among local team members about the culture of remote
staff. This has been highlighted by some Far Eastern cultures revering of hierar-
chy [6, 38]. This manifests itself in a number of ways, often resulting in them not
expressing a negative opinion and constantly agreeing to undertake additional work.
Rather then saying they are unable to cope with these additional activities they work
excessive hours and eventually leave the organization [13]. This can have serious
implications for the success of the project as a whole. In addition, risk associated
with outsourcing activities, to.politically.unstable locations needs to be identified.



2 Global Software Engineering 49

2.5.2 Global Teaming Specific Goal 2: Define Management
Between Locations

Specific goal 2 focuses on global project management between locations. This is
done through two specific practices. The first ensures that operating procedures are
set up correctly. The second focuses on collaboration between locations.

2.5.2.1 SP 2.1 Operating Procedures (1): Define How Conflicts
and Differences of Opinion Between Locations
are Addressed and Resolved

For successful GSE, an effective and defined conflict management strategy should
be implemented [6]. In the collocated situation, staff have the opportunity for regular
face-to-face contact and, on that basis, can often work their problems out, and there-
fore, a less formal approach is needed. This is not the case with remote colleagues.
In this setting, as stated by Karolak (1999): “There must be some mechanism for
handling conflict resolution and someone who decides that resolution”.

When defining the global strategy for dealing with conflict, different types of
conflict have to be taken into account. Some are open and easy to recognize.
However, in global teams where trust has not been established, and particularly
where fear of jobs being outsourced to remote locations exists, conflict can manifest
itself. This includes the development of a “them and us” culture which can lead to
uncooperative and obstructive behaviour which needs to be addressed in the strategy.

2.5.2.2 SP 2.1 Operating Procedures (2): Implement a Communication
Strategy for the Team

Effective communication is a key factor for the successful operation of global teams
[6, 38] and we consider it very important that within the operating procedures of GT,
a communication strategy is implemented. The objective of good communication is
to facilitate the dissemination of relevant information, but the communication pro-
cess is hampered by global distance. The loss of face-to-face contact and the need
to rely on asynchronous tools impact on communication levels. This then impacts
on the amount of information that is transmitted between global team members
[32]. Good communication must be planned, facilitated, encouraged and moni-
tored. It is useful to provide training on how best to communicate with remote
colleagues, including the effective operation of communication tools and procedures
and the linguistic and cultural implications which are inherent when communicating
remotely.

2.5.2.3 SP 2.1 Operating Procedures (3): Establish Communication Interface
Points Between the Team Members

In the GSE environment, individuals across teams do not communicate with each
other.“‘on.the corridor’. Therefore it.is.important to put interfaces and processes in
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place which encourage both formal and informal reporting. Such reporting should
ensure that all relevant team members are aware of how and when they will receive
inputs to, distribute outputs from and complete work products. Teams should also be
aware of other implications such as legal restrictions, or the effect holidays can have
on the project timetable in countries within which they are developing the product.

To be effective, global teams require that information about basic issues such as
local time and public holidays in each location is available. Information about each
team member should be easily accessible by colleagues. Apart from indicating an
individual’s role within the team and their specific areas of responsibility, this should
also include a photograph, their first name, surname, friendly name (if appropriate)
and their preferred form of address. The availability of such information is taken for
granted in a collocated environment, but it is not always clear when dealing with
remote colleagues. Intranets and wikis are invaluable for this purpose.

2.5.2.4 SP 2.1 Operating Procedures (4): Implement Strategy for Conducting
Meetings Between Locations

In a collocated situation, meetings are usually easier to organise than in the situation
where team members are geographically and temporally distant as in the latter situa-
tion it is unlikely that all team members can meet face-to-face. Therefore, alternative
means of communication may need to be used. It must be remembered that not all
employees will be comfortable participating in meetings held via audio or video,
particularly if they have not had the opportunity to meet their global colleagues
face-to-face. Project managers may need to change how they conduct shared meet-
ings. In addition, many GSE companies now implement a policy whereby they host
the meeting, and then circulate minutes to all attendees, clearly articulating what
has been agreed at the meeting. This adds an extra overhead, but it is very useful
when following up on work agreed to be done. It is important to ensure that no delay
occurs between the meeting and the circulation of minutes as people may be waiting
for the minutes before implementing the actions.

2.5.2.5 SP 2.2 Collaboration Between Locations (1): Identify Common Goals,
Objectives and Rewards for the Global Team

Global teams require goals and objectives to be agreed and understood by all
the team members, regardless of location. Then, team members can focus on the
achievement of these goals and success should be measured by their accomplish-
ment [30]. Success can never be measured by the achievements of members at one
geographical location. To actively foster this approach, the global team must be
seen as an entity in its own right, regardless of the location of its team members and
therefore, its performance should be judged and rewarded accordingly.

With regard to acknowledging success, what may be considered a reward in
one culture can be seen as insulting to someone from another culture. The idea
that “money talks” in every culture is far too simplistic an approach [54]. Cultures
place different.values.on different types.of rewards such as money, status and group
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achievement. Project Managers need to understand the cultural motivation of the
different team members and to identify and apply appropriate rewards in each situ-
ation when and where relevant. As well as cultural diversity, the economic situation
and the income tax laws at each location need to be considered when determining
the form of reward provided. The objective is the development of a motivated and
focused team who share a common purpose and objectives.

2.5.2.6 SP 2.2 Collaboration Between Locations (2): Collaboratively Establish
and Maintain the Work Product Ownership Boundaries Among
Interfacing Locations Within the Project or Organisation

Work product ownership boundaries can be defined through the effective partition-
ing and allocation of work across GSE teams. And it is likely that different stages of
product development will occur in different sites (Fig. 2.1). Therefore, it is important
that each location understands their role is in the life cycle of the product, and how
modifications to the product unit they are developing can affect the other locations.
In our research, we have seen requirements changes distributed to specific locations
rather than to all sites, which resulted in product interfacing being unsuccessful.

2.5.2.7 SP 2.2 Collaboration Between Locations (3): Collaboratively Establish
and Maintain Interfaces and Processes Among Interfacing Locations
for the Exchange of Inputs, Outputs, or Work Products

An important aspect of GSE process is ownership. Good software practice recog-
nizes that process ownership and development are best placed with those who are
closest to the process. Often, a collocated process from the parent site is simply
exported and implemented in the distributed site. We have studied situations where
input was not encouraged or welcomed from distributed team members, and this led
directly to the alienation of those team members whose needs were not met by the
process and whose suggestions for improvement were ignored [13].

Therefore, common process goals should be established across locations. The
input of team members at all locations should be sought, encouraged and valued.
Process needs to address the specific challenges associated with GSE should be
identified. This will ensure that relevant structures and procedures from all sites are
taken into account to achieve this goal.

2.5.2.8 SP 2.2 Collaboration Between Locations (4): Collaboratively Develop,
Communicate and Distribute Among Interfacing Teams
the Commitment Lists and Work Plans that are Related
to the Work Product or Team Interfaces

Effective coordination within a distributed software project necessitates that achiev-
able milestones are planned and agreed. In GSE, there is the additional requirement
for effective monitoring to be put in place to oversee ongoing progress with refer-
ence. to.costs, time,.-productivity,.quality.and risk. The provision of contingencies
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to address potential risks also has to be considered and procedures established to
coordinate their implementation when and if they are required. The effective use of
synchronous and asynchronous communication tools is an essential aspect of GSE
communication. Therefore, it is important that within the commitments made, team
members explicitly include communication plans.

2.6 Discussion

Much of the research on GSE has focused on understanding why there are diffi-
culties with implementing GSE within organisations. While this provides a needed
understanding of GSE, it is also important that we, the GSE researchers, present
industry with solutions to their GSE difficulties. The Global Teaming process area
presented in this chapter is an important step in this direction. Through its devel-
opment we provide specific goals, specific practices, sub-practices and guidelines
which can be used by industry who are implementing a GSE strategy. With the
increasing globalisation of software engineering and the distribution of teams inter-
nationally, it is important that industry have access to such information. Our next
stage of development is to evaluate the model in industry through action research.

2.7 Conclusion

As many organisations have discovered to their cost, implementing a GSE strat-
egy is a complex and difficult task. Extensive research in this area has identified
that this is due to a number of factors which include the nature and impact of geo-
graphical, temporal, cultural and linguistic distance [6, 15, 38]. In addition, whether
undertaken in a collocated or geographically distributed environment, team based
software development is not simply a technical activity. It also has important human,
social and cultural implications which need to be specifically addressed. While the
technical aspects of software development cannot be underestimated, neither can the
importance of establishing and facilitating the effective operation of these teams.

Organisations require support in the implementation of their GSE strategy. Our
development of the Global Teaming process area was based on the importance of
establishing effective software teams in the globally distributed setting. In addi-
tion, when implementing software process improvement there is a requirement for
tangible results to be achieved in a reasonable time frame. This is particularly impor-
tant to sustain the level of effort required for improvement to take place [9, 21].
By implementing the Global Teaming process, prompt and effective results can be
successfully achieved as it addresses a key aspect of GSE.
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Glossary

CMMI Capability Maturity Model Integrated
GSD Global Software Development
GT Global Teaming

Insourcing Allocating work to a subsidiary or internal department of the client
organisation.

Nearshoring Software development work is either insourced or outsourced to a
team located in a country that is geographically close to the client organisation’s
country.

Offshoring Software development work is either insourced or outsourced to a
team located in a country geographically far from the client organisation.

Onshoring Software development work is either insourced or outsourced to a team
located in the same country as the client organisation.

Outsourcing Delegating work to a non-client entity, such as a software vendor.

SPICE ISO/IEC 15504

References

1. Agerfalk PJ, Fitzgerald B (2006) Flexible and distributed software processes: Old petunias in
new bowls? Communications of the ACM 49(10): 26-34.

2. Baskerville RL (1997) Distinguishing action research from participative case studies. Journal
of Systems and Information Technology, 1(1): 2545.

3. Bergman B, Klefsjo B (1994) Quality from Customer Neets to Customer Satisfaction.
Sweden: Studentlitteratur.

4. Bradner E, Mark G, Hertel TD (2003) Effects of team size on participation, awareness,
and technology choice in geographically distributed teams. Proceedings of the 36th Annual
Hawaii International Conference on System Sciences.

5. Brodman JG, Johnson DL (1997) A software process improvement approach tailored for
small organisations and small projects. 9th International Conference on Software Engineering,
Boston, MA, USA.

6. Carmel E, (1999) Global Software Teams: Collaboration Across Borders and Time Zones.
Saddle River, NJ: Prentice Hall.

7. Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software
development. IEEE Software, 2(1): 22-29.

8. Carmel E, Tjia P (2005) Offshoring Information Technology: Sourcing and Outsourcing to a
Global Workforce. Cambridge: Cambridge University Press.

9. Casey V (2009) Software Testing and Global Industry: Future Paradigms. In: Richardson,
ITA, O’hAodha, M (Ed.) Newcastle: Cambridge Scholars Publishing.

10. Casey V, Despande S, Richardson I (2008) Outsourcing software development the remote
project manager’s perspective. Second Information Systems Workshop on Global Sourcing,
Services, Knowledge and Innovation, Val d’Isére, France.

11. Casey V, Richardson I (2008) The impact of fear on the operation of virtual teams.

i C G S are Engineering, ICGSE, IEEE, Bangalore,



54

12.

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

I. Richardson et al.

Casey V, Richardson I (2004) A practical application of the IDEAL model. Software Process
Improvement and Practice, 9(3): 123-132.

Casey V, Richardson I (2004) Practical experience of virtual team software development. Euro
SPI 2004 European Software Process Improvement, Trondheim, Norway.

Casey V, Richardson I (2006) Project management within virtual software teams. International
Conference on Global Software Engineering, ICGSE 2006, Florianopolis, Brazil.

Casey V, Richardson I (2008) A structured approach to global software development.
European Systems and Software Process Improvement and Innovation (EuroSPI) 2008,
Dublin, Ireland.

Casey V, Richardson I (2006) Uncovering the reality within virtual software teams. First
International Workshop on Global Software Development for the Practitioner, ICSE 2006,
Shanghai, China.

Casey V, Richardson I (2005) Virtual software teams: Overcoming the obstacles. 3rd World
Congress for Software Quality, Munich, Germany.

. Casey V, Richardson I (2008) Virtual teams: Understanding the impact of fear. Special Issue:

Global software development: Where are we headed? Software Process: Improvement and
Practice 6(13): 51-526.

. CMMI®) Product Team (2006) Capability Maturity Model® Integration for Development, in

Technical Report, S.E. Institute, Editor.

Crow G, Muthuswamy B (2003) International outsourcing in the information technol-
ogy industry: Trends and implications. Communications of the International Information
Management Association 3(1): 25-34.

Curtis B (2000) Software process improvement: Best practices and lesson learned. 22nd
International Conference on Software Engineering, ICSE 2000, IEEE, Limerick, Ireland.
Damian DE, Zowghi D (2003) An insight into the interplay between culture, conflict and dis-
tance in globally distributed requirements negotiations. Proceedings of the 36th International
Conference on Systems Sciences (HICSS’03).

Davidow WH, Malone MS (1992) The Virtual Corporation, New York: Edward Brulingame
Books/Harper Business,.

DeSanctis G, Staudenmayer N, Wong SS (1999) Interdependence in virtual organizations.
In: Cooper CL, Rousseau DM (Eds.) Trends in Organizational Behaviour, Vol. 6. Chichester:
John Wiley & Sons, pp 81-104.

Ebert C, De Neve P (2001) Surviving global software development. IEEE Software 18(2):
62-69.

Fenton N, Whitty R, lizuka Y (1995) Software Quality Assurance and Measurement — A
Worldwide Perspective. London: International Thomson Computer Press.

Galin D, Avrahami M (2006) Are CMMI program investments beneficial? IEEE Software
23(6): 81-87.

Hayes IS (2002) Ready or not: global sourcing is in your IT future. Cutter IT Journal 15(11):
5-11.

Herbsleb JD (2007) Global software engineering: The future of socio-technical co-ordination.
Future of Software Engineering (FOSE’07), Minneapolis, MN, USA.

Herbsleb JD, Grinter RE (1999) Architectures, coordination and distance: Conway’s law and
beyond. IEEE Software 16(5): 63-70.

Herbsleb JD, Mockus A (2003) An empirical study of speed and communication in glob-
ally distributed software development. IEEE Transactions on Software Engineering 29(6):
481-494.

Herbsleb JD, Moitra D (2001) Global software development. IEEE Software 18(2):
16-20.

Hofstede G, (2001) Culture’s Consequences: Comparing Values, Behaviours, Institutions and
Organizations across Nations. Thousand Oaks, CA: Sage Publications.
Humphrey-W-S.(1989). Managing the Software Process. Reading, MA: Addison-Wesley.



2 Global Software Engineering 55

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.
54.
55.
56.

57.

Humphrey WS (1998) Three dimensions of process improvement, Part I: Process maturity.
CROSSTALK The Journal of Defense Software Engineering, February 1998, pp. 14-17.
Jarvenpaa SL, Ives B (1994) The global network organization of the future: Information
management opportunities and challenges. Journal of Management Science and Information
Systems 10(4): 25-57.

Jones C (1996) Patterns of Software Systems Failure and Success. Boston: International
Thompson Computer Press.

Karolak DW (1999) Global Software Development: Managing Virtual Teams and
Environments. Los Alamitos, CA: IEEE Computer Society Press.

Kolind JP, Wastell DG (1997) The SEI’s capability maturity model: A critical survey of adop-
tion experiences in a cross-section of typical UK companies. IFIP TC8 WGS.6 International
Working Conference on Diffusion. McMaster T, et al. (Eds.) Adoption and Implementation of
Information Technology, Ambleside, Cumbria, UK, pp. 305-319.

Lipnack J, Stamp J (1997) Virtual Teams: Reaching Across Space, Time and Originating With
Technology. New York: John Wiley & Sons.

Mockus A, Herbsleb JD (2001) Challenges of global software development. Proceedings
Seventh International Software Metrics Symposium 2001, London.

Mohrman SA (1999) The context for geographically dispersed teams and networks. In:
Cooper CL, Rousseau DM (Eds.) The Virtual Organization (Trends in Organizational
Behaviour), Vol. 6. Chichester: John Wiley & Sons, pp. 63-80.

Nidiffer KE, Dolan D (2005) Evolving distributed project management. IEEE Software 22(5):
63-72.

O’Brien JA (2002) Management Information Systems — Managing Information Technology
in the Business Enterprise, 6th edn. New York: Mc Graw Hill Irwin.

Organisation I S, ISO/IEC 15504 (2006) Information technology process assessment — Part 5:
An exemplar process assessment model, ISO/IEC JTC1/SC7.

Paré G, Dubé L (1999) Virtual teams: An exploratory study of key challenges and strategies.
20th International Conference on Information Systems, Association for Information Systems,
Charlotte, NC, USA.

Parnas D (1972) On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12): 1053—-1058.

Paulk MC, Curtis B, Chrissis MB, Weber CV (1993) The Capability Maturity Model for
Software, S.E. Institute, Editor.

Powell A, Piccoli G, Ives B (2004) Virtual teams: A review of current literature and direction
for future research. The DATA BASE for Advances in Information Systems 35(1): 6-36.
Prikladnicki R, Audy JLN, Evaristo R (2003) Global software development in practice,
lessons learned. Software Process Improvement and Practice 8(4): 267-279.

Raffo D, Setamanit S, Wakeland W (2003) Towards a software process simulation model
of globally distributed software development projects. Proceedings of the International
Workshop on Software Process Simulation and Modelling (ProSim’03), Portland, OR, USA.
Rutkowski AF, Vogel DR, Van Genuchten M, Bemelmans TMA, Favier M (2002)
E-collaboration: The reality of virtuality. IEEE Transactions on Professional Communication
45(4): 219-230.

Sahay S, Nicholson B, Krishna S (2003) Global IT Outsourcing: Software Development
across Borders. Cambridge: Cambridge University Press.

Schneider SC, Barsoux JL (2002) Managing Across Cultures, 2nd edn. Harlow: Financial
Times Prentice Hall.

Smite D (2007) PhD Thesis, Riga Information Technology Institute, University of Latvia.
Strader LB, Beim MA, Rodgers JA (1995) The motivation and development of the space
shuttle onboard software (OBS) project. Software Process Improvement and Practice 1(2):
107-113.

Strauss A, Corbin J (1998) Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded. Theorys2nd.edn. Thousand Oaks, CA: Sage Publications.



56

58.

59.

60.

1. Richardson et al.

Susman G, Evered R (1978) An assessment of the scientific merits of action research. The
Administrative Science Quarterly 23(4): 582—603.

Toaff SS (2005) Don’t play with “mouths of fire” and other lessons of global software
development. Cutter IT Journal 15(11): 23-28.

Yin RK (1994) Case Study Research/Design and Methods, 2nd edn., Applied Social Research
Methods, Vol. 5. Thousand Oaks, CA: Sage Publications.




Chapter 3

Requirements-Driven Collaboration: Leveraging
the Invisible Relationships between
Requirements and People

Daniela Damian, Irwin Kwan, and Sabrina Marczak

Abstract In this chapter we introduce requirements-driven collaboration, which is
the collaboration of a cross-functional team of business analysts, designers, devel-
opers and testers during the development and management of requirements. We
describe an approach that (1) constructs a requirement-centric social network which
represents the membership and relationships among members working on a require-
ment and its associated downstream artifacts and (2) outlines a number of social
network analysis techniques to study collaboration aspects such as communication,
awareness, and the alignment of technical dependencies driven by development of
requirements and social interactions. To demonstrate our approach, we discuss a
case study that examines requirements-driven collaboration within an industrial,
globally-distributed software team. Finally, we discuss implications regarding the
use of our requirements-driven collaboration approach for research and practice.

3.1 A Requirements Perspective on Collaboration

Requirements Engineering (RE) is an area filled with challenges of a non-technical
nature [15]. RE involves activities such as negotiation, analysis and requirements
management. RE requires communication from the elicitation phase [1, 6] down
to the analysis, implementation and test phases. As such, it involves collabora-
tion among large, often geographically distributed cross-functional teams comprised
of requirements analysts, software architects, developers, and testers. This col-
laboration is driven by coordination needs in software development and relies on
communication and awareness.
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Coordination — the act of managing interdependencies between activities [26]
— is a critical aspect in every activity related to a requirement’s analysis, imple-
mentation or testing. Developers allocated to developing requirements coordinate to
establish a common understanding about the work to be done. Since requirements
are volatile, ongoing coordination is necessary to manage interdependencies with
those working on the artifacts related to a changed requirement. Changes in one
requirement need to be propagated to those who work on dependent requirements
and related downstream artifacts. Neglecting coordination with those who work on
dependencies may result in failures [8].

Team members coordinate using two methods [33]: by following a pre-defined
process, and through communication. Most teams manage technical dependencies
by adopting processes that may be supported by tools, such as requirements man-
agement, modeling, source code management, plans, or issue tracking tools [12, 16,
36]. However, coordination by communication is prevalent, especially because doc-
umentation becomes obsolete and relevant knowledge may reside only with people.
Studies found that large projects have extensive communication and coordination
needs [7] and developers spend much of their time communicating with others
[20, 28].

The awareness one has of another’s work affects coordination processes [9, 12,
13, 16, 21, 31]. When project members coordinate with others, they gain knowledge
of the task and team [16]. This knowledge, referred to as team knowledge, helps
them coordinate implicitly. Team knowledge can be divided into two types: long-
term knowledge, and short-term knowledge or awareness [5]. Long-term knowledge
is acquired through training and experience. This information is retained and is use-
ful throughout an entire project. Awareness refers to information that is relevant
for a task at hand; once the situation passes, the information is no longer relevant.
Awareness includes knowing about what others are doing to synchronize actions, or
what information others know within a team.

Effective coordination, knowledge management and information sharing among
team members with diverse organizational and functional backgrounds is critical.
Team members carry out the implementation of requirements, but coordinating such
a wide variety of people is a challenge. Often there are communication and organi-
zational boundaries between each of these roles [1], as well as different expectations
with respect to communication processes.

Collaboration across geographical distance (i.e., different time zones) and socio-
cultural distance (i.e., language and culture) creates additional challenges in project
members’ communication and awareness in the development project (e.g., [11,
16, 19]). A team communicates less effectively with a remote team than with a
collocated team, resulting in a lack of knowledge of remote team activities [16].
This hinders a project manager’s ability to keep track of the effects of changes as
they propagate across sites, and can lead to misunderstanding requirements, low
trust among teams, and reduced team productivity [11]. There is little support for
monitoring progress of requirements or identifying specialists [6]. While some col-
laborative tools aiming at supporting RE in distributed teams [25] rely on teams
self-subscribing to.communication.about.a particular requirement, we found that
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teams that have relevant knowledge and work related to particular requirements have
dynamic membership with unpredictable patterns [10].

By taking a requirements perspective on collaboration, we seek to further our
understanding of the many aspects surrounding the communication, coordination
and awareness of cross-functional teams throughout the project life-cycle, and
which face challenges of socio-technical and organizational nature.

3.2 An Approach to Study Requirements-driven Collaboration

Requirements-driven collaboration is collaboration that occurs during the develop-
ment, implementation and management of requirements. To study requirements-
driven collaboration, we describe an approach that uses concepts and techniques
from social network analysis [34] to obtain insights about the communication,
coordination and awareness patterns of those involved in requirements-driven col-
laboration. Our approach is based on a structure that focuses on the requirement
as the unit of work around which collaboration occurs. We term this structure a
requirements-centric team. Our approach then consists of two steps:

1. Define the requirements-centric social network as a representation of members
and relationships in a requirements-centric team.

2. Define a number of social networks analysis techniques to study aspects of
requirements-driven collaboration.

A requirements-centric team (RCT) is a cross-functional group whose mem-
bers’ work activities are related to one or more interrelated requirements, as well
as downstream artifacts such as design, code and tests. By “related to”” we consider
relationships such as “working on”, “assigned to”, and “communicating about”.

The membership of an RCT contains individuals that have a relationship to a
requirement or multiple interrelated requirements. Such relationships also include
relationships to downstream artifacts that trace to the requirement. Thus, the RCT
membership includes individuals who work on project artifacts such as require-
ments, design, code and test cases, as well as individuals who send and receive
communication artifacts such as E-mail and instant messages. As an example, con-
sider a project team comprised of team members Bob, Eva, Frank, Geoff, Lisa, Ron
and Todd, and a number of requirements Ry, Ry and R3. The following activities
and relationships have been recorded: Lisa, a software designer, is writing a design
specification implementing Ry, as well as test cases for R1. Todd has written code
that implements R;. Eva and Todd exchanged an email message during their work
about R;. Consequently, the RCT associated with Ry (R{CT) contains Lisa, Todd,
and Eva. This is illustrated in Fig. 3.1 that shows Ry on the requirements plane, its
associated project and communication artifacts on the artifacts plane, and the RjCT
on the requirements-centric team’s plane.
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Fig. 3.1 Requirements-centric teams and different RCSNs

Although a requirement-centric team most likely contains people working on a
single requirement, it can also provide a view of people who are working on multi-
ple related requirements. If a requirement is related to another through requirement
dependencies such as structural (e.g., refined-to, changes-to and similar-to depen-
dencies), constraining (e.g., requires, and conflict-with dependencies) or cost/value
(e.g., increases/decreases cost of dependencies) [8], the requirements-centric team
associated to the interrelated requirements comprises all project members whose
work activities relate to these requirements and their related downstream artifacts.
Figure 3.1 also illustrates the RCT associated to Ry&R3 (R3 depends on Rj), so the
R7&3CT contains Eva, Todd, Ron, Bob, Geoff and Frank.

The RCT also applies to non-functional requirements. As non-functional
requirements often have a relationship to functional requirements, and cross-
cut many artifacts, an RCT can identify people who should collaborate because
their work on non-functional requirements influence those working on functional
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3.2.1 Defining Requirements-Centric Social Networks

To analyze the collaboration within requirements-centric teams, we define a
requirements-centric social network (RCSN). The RCSN is a social network [34]
that represents the members (also called actors) and relationships (also called ties)
in a RCT. The actors in an RCSN are among the members of the RCT, and the ties in
the network are representations of different relationships during these members’ col-
laboration. For example, a tie can represent project members’ requirements-related
communication, assignment to work on the same requirements, contributions to the
development of requirement, or awareness of another’s requirements-related work.

Representations such as social networks allow us to capture information about
the real world relationships that form among people whose work is related to
a requirement, and investigate questions such as Who has worked on artifacts
related to particular requirements? How does this compare to the project plan?
Who communicated or coordinated about these artifacts? Who are central people
in the requirements-based communication and thus are key people in processes of
expertise seeking?

Given specific research interests, one can define what relationships to represent in
an RCSN, and collect appropriate data with to generate RCSNs containing different
relationships. Examples of RCSNs that represent relationships include but are not
limited to the following (Fig. 3.1 is used for illustration):

e Technical dependency RCSN. A technical dependency RCSN contains members
that should coordinate because there are technical dependencies among the arti-
facts they work on, e.g., those that contribute to the requirement and related
downstream artifacts up to the current moment in time. This network is fully con-
nected. In Fig. 3.1, there is a technical dependency between R2 and R3. Because
Eva, Todd, Ron, and Bob are assigned to work on R2, and Geoff on R3, the
technical dependency network contains all five team members. Such a network
can be constructed using repository mining that identifies relationships between
artifacts, such as call graphs and trace links.

This network is useful for identifying how many project members have been
involved in modifying the requirement or associated downstream artifacts. The
information captured in this network can be used to propagate change informa-
tion to members working on the requirement, and, more significantly, members
working on dependent requirements. If one’s work is affected by a dependent
requirement, one has to receive information of changes about the related arti-
facts. Other uses for this network include expertise seeking to find members who
recently worked on an artifact related to the requirement, and monitoring the
amount of activity in the development, to identify requirements that may require
additional resources.

o Communication RCSN. A communication RCSN contains members from
the RCT. that_have communicated about the requirements or its associated
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downstream artifact. A tie is drawn if one person communicates about the
requirement with another person. To construct a communication network, data
can be extracted from communication repositories such as mailing lists, online
forum systems, instant messenger logs, and comments on bug-tracking systems.

This network is useful for identifying communication activity generated around
a requirement, and an indication of behaviors such as asking for clarifications on
requirements and communication of changes. This network can be quite larger
than the technical dependency network in that it may include members who
emerge as relevant to the coordination driven by the particular requirement —
for instance, by having provided technical expertise — but who do not belong
to the technical network because they have not modified any technical artifact.
Frank is, for example, an emergent person in the Rog3CSN in Fig. 3.1. Similarly,
fewer members than those in a technical dependency relationship may be com-
municating during the project, indicating a possible lack of coordination in the
development of the requirement. Figure. 3.1 shows Bob and Eva as not hav-
ing communicated in a technical dependency relationship. Because there may be
different reasons for communication, such as communication of changes [9, 10],
coordinating activities [28], and requesting clarification [29], one can construct
and analyze networks that capture only the particular reason for communication.

o Assignment RCSN. An assignment RCSN contains members from the RCT that

have been assigned to work on the requirement or on its associated downstream
artifacts. The network is fully connected because it reflects technical dependen-
cies because the members of this network should coordinate with each other. For
example, in Fig. 3.1, Lisa is assigned to work on the design for R1, and Todd
is assigned to coding the modules related to R1. Consequently, Todd and Lisa
appear in the assignment-R{CSN. Such a network can be built by extracting data
from project planning or bug-tracking systems that contain information about
work assignment.

This network is useful for identifying the expected scope of involvement and
coordination in the development of a requirement. When constructed over a
period of time, this network can show changes on allocation of members in a
certain requirement and this information can be used by senior project manage-
ment to restructure functional allocation of members in a department or in the
company.

o Awareness RCSN. An awareness RCSN contains members from the RCT that

have been identified to have awareness about other members and their work in
the RCT. Awareness is the knowledge that one has about others and their working
activities. Examples include knowledge of what is going on in a task in areas
that affect that member’s work [9, 36]; knowledge of which team members are
around, where and when, as relevant for the task [16]; knowledge of how other
members.can help.one.in his.work [13]; or knowledge of changes made on a
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project documentation artifact such as requirements specification. In the RCSN a
tie is drawn if one person has awareness about the other, using the different types
of awareness. To construct an awareness-based network, data can be collected
through interviews or questionnaires. A question of the form, “Are you aware
of this project member’s current tasks?” or “Are you aware of how can these
project members can help you in your work on requirement R?” can be asked of
individuals in a project team.

This network is useful for identifying who in the organization is knowledgeable
about activities that surround one’s work. Since coordination activities are a crit-
ical component of collaboration in requirements-centric teams, and awareness
plays an important role in facilitating coordination, information about the extent
to which members in an RCSN have awareness of each other’s work is useful
in diagnosing the “coordination ability” of members in RCSNs. This network
can be different than the communication network because people may become
aware through other means than communication. For example, members devel-
oping code related to a requirement may stay aware of progress by subscribing
to the code repository notification feature. On the other hand, a project manager
may stay up-to-date about what is going on in the project by reading status report
of member’s activities.

3.2.2 Using Requirements-Centric Social Networks to Study
Requirements-Driven Collaboration

Having defined requirements-centric social networks, our approach defines a num-
ber of techniques from social network analysis as mechanisms to explore collabo-
ration aspects of requirements-driven collaboration. We describe research questions
and aspects of collaboration that each of these techniques or analysis can answer.

3.2.2.1 Analysis to Characterize the Networks

The measurements of network properties we present can answer questions such
as: What types of requirements require communication-based coordination? Which
requirements are problematic because of unclear description? and Which require-
ments have undergone many changes?

Network size. Network size is the number of members in each RCSN and helps
convey the amount of coordination required for each requirement. The proportion
of team members involved in a particular requirement out of the total team members
in the project may also indicate the relative size and scope of a requirement.

Network density. Network density is the proportion of ties that exist in the net-
work out of the total possible ties. In requirements-driven collaboration, it is a
measurement.of how.tightly-coupled.the requirements-centric team is, and reflects
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the ability of the team to distribute knowledge [31] about the changes in require-
ments or clarifications about requirements. For example, a communication RCSN
with high density would suggest that the team members communicate a lot with
each other person working on the requirement. If seeking clarifications is the topic
of discussion in the highly dense communication RCSN then one may conclude
that the requirement is very ambiguous and problematic because it necessitates a
lot of information exchange to clarify it. Similarly, a communication RCSN drawn
from messages about requirements change that has high density is indicative of a
requirement that is highly volatile. In the literature, density has been studied in rela-
tionship to coordination ease in distributed teams [22], coordination capacity [23],
and enhanced group identification [30].

3.2.2.2 Analysis of Network Actors

Characteristics of the actors, such as the person’s role in an organization, level
of experience and geographical location, may influence relationships observed
in a network. These characteristics are called actor attributes. By analyzing the
attributes of network actors one can partition the network into smaller and more
specific groups. By studying how information flows within and across groups
one can study, for example, how frequently project members communicate with
those outside their functional group, or how frequently they communicate across
distance.

We can view the requirements-centric social network as consisting of different
functional groups located at different geographical locations, or as groups of experts
and novices. The actor attributes thus provides a useful dimension of analysis of
“distance” between people in the network [35]. The geographical distance is an
obvious one, but here we present other types of distance such as functional distance
or level of experience. If two people are close in one dimension, they may consider
themselves quite distant in other dimensions and make decisions about information
sharing behavior. For example, an engineer may exchange communication more
frequently with geographically-distant colleagues in his same product area than with
the another engineer in the same office. Thus, one can study relationships between
attributes such as distance, functional role and others on patterns of information flow
in RCSNs.

3.2.2.3 Analysis of Network Structure

Network structure — the observed set of ties linking the actors in the network — is
important in the study of requirements-driven collaboration because it allows us
to examine patterns of behaviour of those in positions to send information about
requirements, or of the entire network making decisions about requirements. We
regard a requirements-centric social network as a conduit for propagation of infor-
mation or the exertion of influence. Each project member’s place in the overall
pattern of relationships, largely determined by actor attributes such as location,
experience and role, determines what information that person has access to, and
who that person is in a position to influence. Thus, patterns of information flow
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affect the individual’s capabilities in the project and as such there is an impor-
tant relationship between individual actors’ attributes, capabilities and the network
structure.

3.2.2.4 Analysis of Collaboration Behavior Within the Same Network

Each type of network defined in our approach lends itself to the analysis of key
actors in the networks. Using the following techniques, one can identify mediators
of information flow in communication networks, or members who are most aware
of what others are doing in the requirements-driven collaboration.

Centrality. Centrality is an indicator of who is at the core of a network. For
instance, in a communication RCSN, someone who is central sends and receives
messages to a large number of people in the network. Centrality can be computed
for each actor, to gain a relative understanding of this actor’s position in the net-
work, and a centrality index can be computed for an entire network that quantifies
its centrality as a whole. Centrality is important because it has been shown that cen-
tral network configurations lead to more efficient completion of simple tasks [17].
Specific measures for such as degree centrality and betweenness centrality are useful
in the study of requirements-driven collaboration.

The degree centrality indicates the number of connection of an actor and is
indicative of activity [17]. Similarly, the betweenness centrality measure indicates
when an actor is in between other actors and thus may be in a position to con-
trol interactions between those other actors [17]. While other studies found that
betweenness is a predictor for coordination behavior in software development [23],
in requirements collaboration the presence of actors with high betweenness central-
ity may indicate that the information flow has intermediaries, a typical source for
misunderstanding in requirements.

Brokerage. As work progresses in an organization, people are naturally divided
into subgroups such as teams or geographical locations. Brokerage is the case where
one person, called a broker, is a bridge between two subgroups. The broker is in a
sensitive position because the person is able to control the flow of information into
or out of the subgroup.

Studies of brokers in global software development have identified that bro-
kers effectively disseminate information between distributed sites when maintaining
direct relationships is not practical [22]. They are usually the most knowledgeable
members of a team regardless of geographical distance [14, 27]. In requirements-
driven collaboration, brokers may be essential for enabling effective flow of
information between teams. However, this may be problematic if a broker is
introducing misunderstandings or limiting information transmitted.

3.2.2.5 Analysis of Collaboration Behavior Across Different
Types of Networks

Because requirements-centric social networks capture communication and work
relationships, one can compare different types of networks to learn the effects of
one type of relationship on another.
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Alignment of networks. The alignment between social interactions and techni-
cal dependencies has been studied in software engineering with a measure called
socio-technical congruence (STC) [32]. To compute STC one calculates the ratio of
actual social interactions over the expected coordination needs from the technical
dependencies in the project. Research suggests that a high congruence of technical
dependencies and social interactions improves task completion speed [3]. If a social
interaction is missing where a coordination need exists, it is considered a “gap” in
socio-technical coordination [14].

In our requirements perspective on collaboration, the assignment and technical
RCSNss reflect coordination needs. Similarly, the communication and awareness
RCSNs constructed from data on social interaction reflect actual coordination
behavior and ability respectively. A STC index can be computed by dividing the
number of relationships in the coordination needs network (either assignment or
technical RCSN) by the social interaction network (communication or awareness
RCSN). In requirements-driven collaboration, a low STC index may by a symp-
tom of a larger problem: for example, not coordinating a requirements change with
others who work on interrelated requirements.

Correlation between two network structures. The existence of a relationship in
one type of network may have a correlation to the existence of a relationship in
another type of network. For example, there may be a correlation between pat-
terns of communication and awareness in requirements-driven collaboration. One
can use a social network analysis technique called Quadratic Assessment Procedure
(QAP) to investigate correlations [24]. Previous research used QAP correlation in
studies of software developer’s social networks and found that higher frequency
of communication was associated with higher familiarity and awareness of other’s
work [13].

3.3 A Study of Requirements-Driven Collaboration
in an Industrial Project

As an example application of our approach to study requirements-driven collabo-
ration, we describe the insights from a field investigation of a global commercial
software project in a large international organization. Our goal was to explore how
cross-functional teams related by the work on the same requirement or dependent
requirements coordinate through communication and team knowledge. We thus
sought to identify, for each requirement in the project, properties of communica-
tion in the development of a requirement, as well as of information flow in the
development of dependent requirements. We first describe the project and the data
available. After describing the social networks we analyzed, we discuss our findings
in relation to a set of specific research questions.

We discovered that a RCSN tends to involve more people than initially assigned
to work on the requirement. We also determined that, despite low socio-technical
congruence in some of the RCSNs, project team members were still able to coor-
dinate their. work effectively.and.deliver.the project on time. Finally, the existence
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of brokers may have been able to help mitigate the effect of large geographical
distances on project communication.

3.3.1 Construction of the Requirements-Centric Social Networks

The project involved 12 members distributed over two sites, the USA and Brazil,
as follows: 3 in the USA (2 developers, and 1 technical leader) and 9 in Brazil
(5 developers, 1 technical leader, 2 testers, and 1 test leader). They had in average 8
years of work experience and were involved with the project since its inception.

A number of data sources were available in the project and allowed us to col-
lect information about project members’ activities on requirements and associated
downstream artifacts.

From the requirements document we identified a total of 13 functional technical
requirements. In this project the requirements represented requests for updates to
software components that integrate the application with other software products.
For example, one of the requirements referred to upgrading a component in order to
avoid issues on the application after rebooting the machines. The requirements were
described in a high level since the project team had previous knowledge about the
product architecture.

To identify dependencies among the project requirements, we examined the
requirements-traceability document and conducted interviews with team members.
We identified five pairs of dependent requirements in this project. Of the five pairs,
two are structural dependencies and three are constraining dependencies.

To analyze the collaboration around the development of project requirements, we
constructed the following social networks:

1. For each of the 13 requirements, we constructed the assignment RCSN, reflect-
ing assignment to work to each requirement; the communication RCSN, reflect-
ing actual communication on a particular requirement during the project; and
the awareness RCSN, reflecting awareness of requirements-related activities
during the project.

2. For each of the 5 pairs of dependent requirements, we constructed the commu-
nication RCSN.

We were not able to inspect the change management repository and thus were
not able to construct the technical dependency RCSN.
We constructed each network as follows.

1. To build the assignment RCSN for each requirement, we inspected the require-
ments document and project plan and identified all team members who were
allocated to work on the requirement or the associated downstream artifacts.
These members were included as actors in the network. We then fully connect
the network.
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To construct the communication and awareness RCSNs, we collected data
through questionnaires and interviews at the two-thirds point in the project.
For each requirement network, we included all members identified in the
assignment RCSN as well as those who became involved in the coordination
associated to the particular requirement but were not included in the project
plan. We asked the respondents to indicate any additional members with whom
they communicated about a requirement and if they were aware of they were
doing that is related to their work respectively. We also captured the reason
for communication by asking respondents to indicate whether the communi-
cation related any of the following: communication of changes, coordination
activities, requirements clarification, requirements negotiation, and synchro-
nization of code. Figure 3.2 exemplifies membership in the assignment and
communication RCSNs for a requirement that had John, Kyle, Kim and Jim
assigned to its development. The communication RCSN also indicates reasons
for communication for each tie in the network.

2. To construct the communication RCSN for each pair of dependent requirements
(Fig. 3.3), we identified the list of team members who were allocated to work in
every task related to the particular set of dependent requirements by inspecting
the project plan. If the team member indicated communication with another per-
son about any one of the dependent requirements in the set, then we connected
the two people in the communication RCSN for dependent requirements. The
data on the reason for communication allowed us to construct a communication
RCSN for each of the five reasons. We thus constructed a total of 25 networks.
Figure 3.3 shows one of the 5 networks constructed for the two dependent
requirements Ry and Rj.
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3.3.2 Communication in Requirements-Driven Coordination

To answer questions about communication in requirements-driven collaboration, we
calculated network measurements for the networks we constructed. We analyzed the
size, actor attributes and ties for each of the networks associated for each of the 13
requirements in the project as well as the 5 dependent requirements.

How many people are typically working on/communicating about a require-
ment? In the project of 12, we found that all assignment and communication RCSN
involved about 5 and 7 people respectively, from both geographical locations. The
mean size of the assignment RCSNs was 5 people (standard deviation of 1) where
an average of 3.2 people were in Brazil and 1.7 were in the USA. The mean size
of the communication RCSNs was 7.8 people (standard deviation of 1.4) where an
average of 5.5 people were in Brazil and 2.3 were in the USA.

Are there more people communicating about a requirement than those assigned
to work on the requirement? In terms of amount of communication in each net-
work, we observe that the networks did not exhibit full connectedness though a
fair level of interaction. The average number of interactions between members in
the network was 38.4, and the average network density was about half of a fully
connected network: 0.43 (standard deviation 0.16). The project team completed the
requirements despite not communicating with every other person in the network,
suggesting that the team members were able to coordinate using methods other than
communicating.

We then compared the assignment and the communication networks to determine
if coordination involved only those individuals assigned to the requirement. We
found that communication during the development of a requirement, as reflected
in the communication network, typically involved more project members than
those allocated to work on the requirements through the project plan. These
emergent people were identified as providing expertise to those who were assigned
to the requirement. This expansion of the assignment network indicates a dynamic
evolution of membership and interaction in a requirement-centric team.
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Using actor properties (role and geographical location), we identified that a
developer was most likely to be emergent, though technical leaders and testers were
emergent as well. Across networks, on average 34% interactions were with emer-
gent team members and 43% took place across-sites. Although previous research
[3] identified that coordination requirements are dynamic and that often coordi-
nation needs are not matched by social interaction, our result indicates that the
actual communication network is larger than the technical dependency network as
reflected in the project plan. This implies that real-time awareness systems that aim
at improving coordination should consider providing up-to-date information about
those coordinating about a requirement to complement the information available in
project plans.

What information do members exchange in an RCSN? To obtain details about
the communication around requirements, we asked the participants to indicate the
reason for communication that they exchanged with each other member in each of
the communication RCSNs (communication of changes, coordination of activities,
requirement clarification, requirement negotiation, and implementation issues) and
constructed specific communication RCSN for each requirement and each reason
for communication.

By counting the ties in each of these topic-specific communication RCSNs we
identified that communication of changes and coordination of activities were the two
most frequent reasons for communication, followed by implementation issues. The
top type of communication with emergent members was coordination of activities,
followed by implementation of issues. Across sites, no single type of communication
stood out. These findings align with our earlier finding that the emergent members
are indeed involved in requirements-driven coordination [10]. The fact that the sec-
ond most-frequent topic for discussion with emergent members was implementation
issues corroborates with our finding that most frequent emergent members were
developers.

Are people with coordination needs coordinating in practice? To identify
whether project members who need to coordinate their work on a common
requirement do indeed engage in coordination, we computed the socio-technical
congruence between the assignment RCSN (reflecting coordination requirements
in the project) and communication RCSN (reflecting actual social interactions)
following the description in Section 3.3.

We identified that in average (mean) the 13 RCSNs are 0.73 congruent. For
the 13 requirements, there is perfect alignment between the technical dependency
and social interactions for 4 requirements, indicating that coordination among team
members happened according to the allocation planned by the project manager. For
the other 9 requirements however, the STC index is around 0.6 indicating that about
40% of links from the project plan are not realized by communication among project
members.

Following this analysis, we observed that the project was able to deliver each
of its requirements on time despite the fact that the communication networks
were not fully congruent with the assignment networks. Previous studies of socio-
technical_congruence regarded_the presence of gaps as detrimental to project
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success [14]. Our results call into question the necessity that each person in the
network needs to fill communication gaps according to the coordination needs.
Cost-benefit considerations include the fact that some communication gaps are too
expensive to fill especially in geographically-distributed teams, or may put undue
burden on team members to be practical to fill. The participants’ role — an actor
attribute in the network — may also enable us to further examine the gaps in the
communication-based network. By bringing socio-technical congruence to the
requirements level one can study the communication between different roles other
than developers: testers, business analysts, and project leaders can be incorporated
into the networks. One may find that some gaps are not necessarily detrimental to
project’s success. Interesting research questions include “Does always a require-
ments engineer need to directly communicate with coders?”” Understanding which
gaps must be closed by direct communication or which gaps can be covered by
others, such as those in a broker configuration, is important to further the study of
requirements-driven collaboration.

Does distance correlate with communication in a RCSN? To analyze the rela-
tionship between distance and communication in this project we analyzed the actor
attributes (member’s geographical location) and the structure of the communication
RCSNs. We found a correlation between the geographic distance and the frequency
of communication (r>=0.426 and p<0.02), indicating that the co-located members
tended to communicate more frequently than with those at a distance site. This find-
ing provides implications for knowledge sharing in global teams. Decisions made
when members meet informally in the coffee room should be captured and shared
with the remote members in order to keep the entire team up-to-date with project
information.

Are there key members who mediate the flow of information about requirements?
Which are these members’ characteristics? Having identified the reasons for com-
munication in requirements-driven collaboration, we decided to identify patterns in
how the information was mediated in these networks. We analyzed information flow
in the communication networks of the five pairs of dependent requirements (recall
there were 25 networks in total). The case of dependent requirements in this project
provided us with the example of a communication network that was larger than
the one of a single requirement. For an idealized communication between mem-
bers working on a set of dependent requirements, information from each member in
one requirement network should be transferrable to all members in the dependent
requirement network. The longer the path used to transfer information, the higher
the chance for misinterpretation and loss of information. Therefore, short paths of
information-travel are of special interest in requirements management processes.
Here we investigated the presence of mediators of information exchange between
the two groups of project members working on two dependent requirements by
searching for brokers of information flow along paths of length two. A broker is
a member who mediates communication between a pair of members that would
otherwise be disconnected [18].

Our analysis identified brokers in each of the 25 networks of the five pairs of
requirements..We.discuss.three findings.on brokerage.
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First, brokerage was predominant in certain types of communication. We found
most brokers in the communication of changes, communication about requirements
clarifications and communication during coordination activities and almost no bro-
kers in negotiations and communication to synchronize code. This is not a surprising
finding since the activities of requirements negotiations or synchronization of code
may be less frequent during requirements-driven collaboration and also only involve
certain people.

Second, and perhaps one of the most interesting findings on brokers in our study
is that the most frequently identified broker in almost all pairs of requirements,
was located in the US (referred to as Jane). One would not be surprised that Jane
mostly communicated across distances given that the majority of project members
are in Brazil (9 out of 12), and because she played a key role in the project, as
a development leader. Given that geographical distribution introduces significant
communication problems [21], and that maintaining relationships across distances
known to be difficult [13, 16], one would expect that for more efficient communica-
tion she would have appointed or collaborated with a Brazil-based project member
or leader. Surprisingly, that was not our finding. Jane did not only communicate fre-
quently with the distanced members but was a broker for all communication types
among Brazilians. We would have expected to see this pattern with a Brazilian-based
project member. This can be explained by the familiarity of project members with
Jane given her role, and corroborates with evidence that familiarity has influence on
communication [10, 13].

Third, we found that knowledge and experience act as determinants for broker-
age. Additional contextual project information in our study revealed other factors
that relate to brokerage. Jane was part of four of the five pairs of dependent require-
ments. We believe that her knowledge and experience is a strong determinant for her
broker role in most networks. Jane has been a development leader in the company
for more than 7 years, and she acquired extensive knowledge of the project in her
role as coordinator of negotiation activities with the business partners. Her profile
fits what has been referred to as a specialist role and leads her to become a bro-
ker in the team’s communication. This finding implies that organizations planning
to establish a remote team with requirements-driven technical dependencies should
consider including experienced team members at the remote team as a mechanism
to mitigate the effect of distance on cross-site information flow.

Is there any relationship between frequency of communication and awareness in
requirements-driven collaboration? The relationship between communication and
awareness is important to study because one would expect that those who communi-
cate more frequently are also aware of relevant working context. The average density
of the awareness RCSNs was slightly lower than the average density of the commu-
nication networks — 0.43 (standard deviation 0.16) — suggesting that in this project
communication may not necessarily ensured awareness of who else was working on
the same requirements. We also conducted a QAP correlation test [24] to compare
the behavior of the communication and awareness RCSNs for each requirement in
the project. We used the data on frequency of communication and awareness of
what others.are doing that is.related.to.one’s work. We found a correlation index
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of 0.302 (p<0.05), which indicates that those who communicated more were also
more aware. When this is analyzed in light of findings that project members keep
aware of each other through regular meetings, or unplanned interactions, the consid-
erable reliance on verbal communication or local experts leads to research questions
for future work such as: What type of local or verbal interaction facilitates the
maintenance of this awareness? How can an awareness system replicate it in the
distributed interaction? More investigation is also needed into the impact of other
factors such as process or ethnic culture on awareness. While we only sought to cor-
relate awareness with communication in this study, it is also possible that awareness
was also maintained as a result of certain procedures for knowledge dissemination in
project meetings or may have been hindered due to different communication styles
across sites.

3.4 Implications

In this chapter we described a requirements perspective on collaboration in software
development and a structured approach to investigate coordination in requirements-
centric teams. A researcher using this approach can define network relationships and
actor attributes that apply to a specific case of interest. In our case study we chose
to investigate the alignment of those assigned to work on a requirement, and their
communication, as well as the effects of distance on communication and awareness.

Insights that we obtained about collaborative processes in software development
relate to the effect of distance on communication, the effect of awareness on com-
munication, properties of brokers in cross-functional teams and the effects of roles
on brokerage.

3.4.1 Research Implications: Future Applications of the Approach

To extend the study of requirements-driven collaboration, the approach described in
this chapter should be applied to examine different types of cases of requirements-
driven collaboration. In our study, we studied a small project with sets of two
dependent requirements. The approach can be applied to larger projects that con-
tain multiple dependent requirements. This will provide insight into the nature of
coordination over complex technical dependencies.

The study of requirements-driven collaboration can also include the analysis of
digital artifacts, as well as qualitative observations. These artifacts may include
email data, requirement databases, and source code that are related to a requirement.
An analysis using quantitative data would allow more accurate results regarding the
characterization of requirements-driven collaboration.

The effect of roles on network characteristics can also be studied in more detail.
Our study explored interactions between developers and testers, but our approach
allows one to study interactions that include project managers and requirements
analysts as well.
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3.4.2 Practice Implications: Designing of Collaboration Tools
to Support Coordination of Cross-Functional Teams

The paradigm of a requirements-centric team can be used to develop tools to sup-
port cross-functional teams coordinate effectively. Collaborative tools can also assist
managers who wish to monitor and improve coordination processes within their
organization.

A tool that can generate an RCSN automatically, perhaps using data-mining tech-
niques [2, 37] and automated requirement-traceability tools [4] can identify who
works on which artifacts, and trace these artifacts to requirements. Such a tool may
be able to extract data from issue-tracking repositories, requirement repositories,
mailing lists, and chat logs. These tools can be embedded into software development
and management tools to support:

e Broker identification. A tool can identify brokers mediating activity on different
requirements to make a project manager aware of who the critical people in a
project are. Resources can be provided to these persons so they can better do
their job. A backup person can be trained to cover for the broker when he is not
available.

e Expertise seeking. Generating an RCSN based on assignment and communica-
tion networks will indicate who is assigned to working on each requirement.
Thus, someone who is seeking help will be able to identify who works and
communicates on a particular part of the project and consult with that person
accordingly.

e Diagnosing coordination. A tool can compute social network properties and pro-
vide a manager with information to improve project performance. Measurements
include the time to complete a task and the number of changes made to an arti-
fact in a time period. Socio-technical congruence is an example of a technique
that can identify gaps in coordination. A manager can take actions to increase
the alignment between the social structure of the organization and the technical
dependencies among artifacts.
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Chapter 4

Softwares Product Lines, Global Development
and Ecosystems: Collaboration

in Software Engineering

Jan Bosch and Petra M. Bosch-Sijtsema

Abstract Effective collaboration in software engineering is very important and
yet increasingly complicated by trends that increase complexity of dependencies
between software development teams and organizations. These trends include the
increasing adoption of software product lines, the globalization of software engi-
neering and the increasing use of and reliance on 3rd party developers in the context
of software ecosystems. Based on action research, the paper discusses problems of
in effective collaboration and success-factors of five approaches to collaboration in
large-scale software engineering.

4.1 Introduction

Collaboration is perhaps the most important lever for achieving high quality, effi-
cient and effective software engineering practices and results in virtually any
software developing organization.! Achieving effective collaboration, however, has
proven to be a major challenge in many organizations, resulting in failed or late
projects, products or systems not aligned to customer requirements, clashes between
the research and development (R and D) organization and the rest of the company,
etc. Although significant progress has been made over time, through, among oth-
ers, CMMI (Capability Maturity Model Integration), agile and iterative processes,
explicit software architecture management, and effective collaboration in large-scale
software development remain a challenge. For purposes in this paper we consider
collaboration effective if it generates minimal overhead for the organization while
avoiding the aforementioned problems.
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One can observe three trends that have surfaced over recent years that cause col-
laboration in software engineering to become significantly more complicated. The
first trend is the increasingly broad adoption of software product lines [1, 2, 6, 21].
Software product lines have proven to be perhaps the most successful approach
to improving productivity in software engineering; see, e.g., the product line hall
of fame [10]. However, transitioning an organization that has traditionally worked
in a product-centric fashion to a product line-centric way of working is a very
complicated change process. The primary reason for the difficulty in changing the
organization is because the product-line approach causes dependencies to be cre-
ated between software assets, and between teams responsible for those assets, that
did not exist earlier. In other words, an additional level of collaboration between
software engineering teams and organizational units is required.

The second trend is the globalization of software development [4, 9, 19]. More
and more global companies have either introduced several software development
sites or engaged in strategic partnerships with remote companies, especially in
India and China, due to several reasons; e.g., reduction of cycle time, reduction
of travel cost, use of expertise when needed, entering new markets, and respon-
siveness to markets and customers [5]. Global development has many advantages
but brings along its own set of challenges due to differences in culture, time zone,
software engineering maturity and technical skills between teams in different parts
of the world. Again, significant additional demands are placed on the collaboration
between teams in the organization. When teams need to closely cooperate during
iteration planning and have a need to exchange intermediate developer releases
between teams during iterations in order to guarantee interoperability, the coordi-
nation cost starts to significantly affect the benefits normally associated with global
development (cf. [11]).

A third important trend seen is the increasing adoption of ecosystems approaches
[15]. We define software ecosystem as follows: a software ecosystem consists of a
software platform, a set of internal and external developers and a community of
domain experts in service to a community of users that compose relevant solution
elements to satisfy their needs. Once a product or family of products has become
successful in the market, a significant business opportunity appears in the form
of third party developer and customer contributions to the product (family). This
requires that the internal product (line) software is converted into a platform that
is opened up to developers and development teams external to the organization. In
addition, this requires that customers buying a product that is part of the software
product line want to extend the functionality of the product with solutions available
in the community or developed by 3rd party developers after the product has been
deployed at the customer. Again, a significant additional demand is placed on the
ability of the organization and the ecosystem as a whole to collaborate effectively
as part of the software engineering process.

The trends discussed above have one important aspect in common: all increase
the amount of coupling between software assets as well as between organizational
unites. Below, we analyze the concept of decoupling in more detail. At the top
level, coupling (defined.as.the.absence.of decoupling) can be broken into two main
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categories, i.e., software asset coupling and organizational coupling. The former
category is concerned with the dependencies that exist between technology assets,
complicating their composition in planned and unplanned configurations. During
the 1970s, this was already studied in the context of structured design [23] and
during the last decade the research around software architecture has continued that
tradition. Organizational coupling is a reflection of the dependencies between soft-
ware assets in that the ability of teams to work independently is constrained because
of dependencies between the software assets that the teams are responsible for.

For both types of coupling, in many contexts the term decoupling is used as
the term of choice as it indicates that explicit steps have been taken to decrease
dependencies between software assets that naturally are tightly connected. Based
on our research, however, we take the position that the amount of coupling between
software assets is a consequence of the beliefs of the software architects designing
the system. Typically, the perceptions by the architects about what functionality is
expected to vary versus which functionality is not, causes certain dependencies to
be created without inhibitions whereas in other areas explicit decoupling techniques
are applied.

Architects often are a product of the development organization they grew up
in and, consequently, tend to assume a certain approach to large-scale software
development. This approach assumes certain operating mechanisms to be present
between different software development teams in order to govern their collabora-
tion. The challenge, however, is that due to the three trends discussed above, the,
often implicitly defined, approach to software development becomes increasingly
inefficient.

We address that concern, by explicitly defining five approaches to inter-team col-
laboration, which are based on action research of several companies. We focus on
which different collaborative approaches large-scale software development compa-
nies apply, when these approaches are most applicable and discuss some of their
challenges we found in the case companies. The different models show how compa-
nies organize large-scale software development, ranging from a highly integrated to
a fully decoupled, inter-organizational approach, i.e., integration-centric approach,
release groupings, release trains, independent deployment and open (eco-) system
development.

In the remainder of the paper we discuss these five approaches for collab-
oration in large-scale software as well as specific problems that arose within
these approaches. We conclude the paper with discussing in which context these
approaches would be most applicable.

4.2 Architecture, Process, Organization

Collaboration in software engineering is challenging and, as we discussed in the
introduction, there are several trends that are complicating collaboration even fur-
ther..In. this section,.we.discuss.the key challenges or problems that we have
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identified in our research. The problem statement is organized according to three
areas: (1) software architecture; (2) engineering processes and (3) the organization
(mainly research and development). This is related to Herbsleb et al. [8] who per-
ceives software architecture, plans (in our case organization) and processes as vital
coordination mechanisms in software projects in order to have effective communi-
cation between software development teams. In the industrial reality, these areas are
deeply interconnected, but we use this structure intentionally. Ideally, architecture
and technology choices are derived from the business strategy and should drive pro-
cess and tools choices. These, in turn, should drive the organizational structure of
the R and D organization [13, 14]. In industry however, the three areas mentioned
above are not always aligned. Often, the current organizational structure defines the
processes and through that the architectural structure for the product or platforms
and consequently constrains the set of business strategies that the company can
aspire to implement. When companies define new growth strategies, the business
strategy often collides with the existing organizational structure and consequently
the process and architecture choices. The paradox is that the software development
department still is responsible for releasing existing products and platforms while at
the same time, needs to embark on new business strategy implementation. Typically,
the architecture, process and organization approaches allow for too tight coupling
and the problems discussed later can almost always be addressed by increasing the
decoupling between architecture or organization elements.

Perhaps the key area for enabling effective collaboration in software engineer-
ing is software architecture. Collaboration often breaks down due to too many
unnecessary dependencies between components and the teams responsible for those
components. The dependencies not only need to be individually managed, but
the overall system complexity grows exponentially with a growing number of
dependencies.

The software architecture has a significant impact on the collaboration in the
software development organization responsible for a system or platform. However,
software architecture is only an enabler of effective collaboration; it does not define
the collaboration itself. The engineering processes, both formal and informal, define
the actual collaboration between teams and between individuals.

Next to the software architecture and processes, the organizational context
and structure are important for effective collaboration in large-scale software
development projects. Several aspects mentioned in literature are globalization
[9, 19] co-ordination of interdependencies, knowledge management (transferring
tacit knowledge into explicit knowledge for example [17]), and alignment of the
architecture, processes and the organization. In the next section, we discuss five
approaches found in industry according to the dimensions of architecture, process
and organization.

The research and approach presented in this paper is based on an action research
methodology applied by the authors in numerous software-intensive system com-
panies as well as in other industries. The action research method seeks to bring
together action and reflection, theory and practice, in participation with others, in
the pursuit.of practical solutions.to.issues.of pressing concern to people, and more
generally the flourishing of individual persons and their communities [20, 1].
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Table 4.1 Overview of case studies

Cases Company A Company B Company C
Product Embedded systems Consumer electronics ~ Software products
Market Global Global North America, Asia
Type and size of Component teams Division platform team Product platform
teams (between 10-30 (150+ members) team (200+
team member) Product platform members)
Global teams team (200+ Product team (25+
(between 10-30 members) members)
team member) Product team (50+
Platform members)
organization (500+ Global teams (30+
members) members)
Method and duration ~ Participant observer, Participant observer, Participant observer,
of study 3 years 3 years 2 years
Data collection Interviews, workshops  Interviews Participant
methods observation

We studied several R and D (Research and Development) units and software
development departments in three global companies (Fortune 100 and 500 com-
panies), who developed embedded products and software and service products for
different markets (European, US and Asian markets). In Table 4.1 we present an
overview of the cases investigated. Data was collected with help of semi-structured
and unstructured interviews (which were coded) and participant observatory meth-
ods. We applied a two-phase analysis method of first within-case analysis and later
on cross-case analysis method.

4.3 Five Collaborative Approaches

From all the units and teams we studied, at least two cases reported one of the five
approaches being applied for large-scale software development. These approaches
are discussed below. We organize the discussion around three dimensions: architec-
tural, process and organizational aspects of large scale software development and
conclude with success factors of the different approaches. In Table 4.2 we present a
summary of the five collaborative approaches.

4.3.1 Integration-Centric Development

Description: We found several firms applying an integration-centric approach, in
which the organization relies on the integration phase of the software development
lifecycle. During the early stages of the lifecycle, there is allocation of requirements
to the components. During the development phase, teams associated with each
component implement. the requirements.allocated to the component. When the
development of the components making up the system is finalized, the development
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Table 4.2 Collaboration models for large global software development
Open (eco-)
Integration- Release Independent system
Approach  centric grouping Release trains deployment development
Description Deep Loosely coupled System System Platform and
interconnections  subsystems components components 3rd part
between with decoupled, but  decoupled, solutions
the elements high internal deployment deployment decoupled and
of the system. dependency coordinated independent deployed
independently
Architecture Strongly High integration High decoupling High decoupling  Highly
challenge  interconnected within release between com-  between decoupled
architecture grouping, high  ponents components with
— Tight decoupling — Teams — Coordination  sand boxes for
interdependency  between develop and execution third party
and complexity ~ groupings independently, complicated functionality
challenge — Management  while — Security
challenge of maintaining models in
decoupling backward platform
interfaces compatibility architecture
challenge
Process Continuous Continuous Short iteration Each team Each team
challenge  coordination coordination cycles; only selects length, selects length
between teams within coordination at  frequency and of iteration
— Lockstep grouping start/end time of iteration  cycle
evolution — Variation of cycle cycle — Certification
challenge challenge — Teams — Challenge process
between and independent, for high degree  possible
inside release but all teams  of automation
groupings need to release  and coverage of
as same testing
point in time
Organization High Teams Distributed Distributed teams Distributed
challenge  interdependency responsible teams within  within organi-  teams across
between teams for different organization zation organizational
— Mismatch release — Reduction of - Coordination  boundaries
architecture groupings can coordination performed by — Challenge of
and be distributed costs software misalignment
organization — Coordination architecture business case
structure costs and of provider
completion and external
time challenge developers
Success 1. Release cycle 1. Geographical 1. Frequent 1. Different 1. Market
factors long. distribution of releases benefi- iteration cycles approach
2. Deep integra-  teams aligned cial for firm. for different 2. Teams
tion of compo-  with release 2. High level layers of the highly
nents groupings of maturity stack. dispersed.
3. Co-location of 2. High integra-  needed 2. Highlevel of 3. High level
team tion within maturity needed  of maturity
application needed

domain
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enters the integration phase in which the components are integrated into the over-
all system and system level testing takes place. During this stage, typically, many
integration problems are found that need to be resolved by the component teams.

If the component teams have not tested their components together during the
development phase, this phase may also uncover large numbers of problems that
require analysis, allocation to component teams, co-ordination between teams and
requiring continuous retesting of all functionality as fixing one problem may
introduce others.

In response to the challenges discussed above, component teams often resort to
sharing versions of their software even though it is under development. Although
this offers a means of simplifying the integration phase, the challenge is that the
untested nature of the components being shared between component teams causes
significant inefficiency that could have been avoided if only more mature software
assets would be shared. One approach discussed frequently in this context is contin-
uous integration [12], but in our experience this often addresses the symptoms but
not the root causes of decoupling.

Architecture: The architecture of the system or system family is typically not
specified and if documentation exists, the documentation is often outdated and plays
no role except for introducing new staff to the course grain design of the system.
Because of this, the de-facto architecture often contains inappropriate dependen-
cies between the components that increase the coupling in the system and cause
unexpected problems during development.

In our cases, we found a typical architectural challenge that seems to be prevalent
with this approach: the system architects failed to keep it simple. The key role of the
software architect is to take the key software architecture design decisions [3] that
decompose the system into consistent parts that can continue to evolve in relative
independence. However, as has been studied by several researchers, (e.g., [22]) no
architectural decomposition is perfect and each has crosscutting concerns as a con-
sequence. These concerns cause additional dependencies between the components
that, as discussed above, need to be managed and add to the complexity of the sys-
tem. Techniques exist to decrease the “tightness” of dependencies, such as factoring
out the crosscutting concerns and assigning them to a separate component or by
introducing a level of indirection that allows for run-time management of version
incompatibilities. In the initial design of the system, but especially during its evo-
lution, achieving and maintaining the absolutely simplest architecture is frequently
not sufficiently prioritized. In addition, although complexity can never be avoided
completely for any non-trivial system, it can easily be exacerbated by architects and
engineers in response to addressing symptoms rather than root causes, e.g., through
overly elaborate version management solutions, heavy processes around interfaces
or too effort consuming continuous integration approaches.

Process: Although most organizations employing this approach utilize tech-
niques like continuous integration and inter-team sharing of code that is under
development, the process tends to be organized around the integration phase. This
often means a significant peak in terms of work hours and overtime during the weeks
or.sometimes.months.leading up.to.the next release of the product.
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A challenge we found was lockstep evolution. When the system or platform can
only evolve in a lockstep fashion, this is often caused by evolution of one asset
having unpredictable effects on other, dependent assets. In the worst case, with
the increasing amount of functionality in the assets, the cycle time at which the
whole system is able to iterate may easily lengthen to the point where the product
or platform turns from a competitive advantage to a liability. The root cause of the
problem is the selection of interface techniques that do not sufficiently decouple
components from each other. APIs may expose the internal design of the com-
ponent or be too detailed that many change scenarios require changes to the API
as well.

Organization: The development organization has a strong tendency to concen-
trate all-important work to one location. Even if the organization is distributed, there
is often a constant push to concentrate development and the team members in remote
locations tend to travel extensively.

One problem we found was a mismatch between architectural and organizational
structure. In one of the organizations, we were involved in transitioning the company
from a product-centric to a product-line centric approach to software development.
This requires a shared platform that is used by all business units. The organization,
however, was unwilling to adjust the organizational structure and instead asked each
business unit to contribute a part of the platform. Each business unit had to prioritize
between its own products and contributing to the shared platform and as a conse-
quence the platform effort suffered greatly. Although the importance of aligning
the organization with the architecture has been known for decades [7] in our case
studies the organizations violate this principle frequently.

Success factors: Although the integration-oriented approach has its disadvan-
tages, as discussed above, it is the approach of choice when two preconditions are
met. First, if conditions exist that require a very deep integration between the com-
ponents of a system or a family of systems, e.g., due to severe resource constraints
or challenging quality requirements, the integration-oriented approach is, de-facto,
the only viable option. Second, if the release cycle of a system or family of sys-
tems is long, e.g., 12—18 months, the amount of calendar time associated with the
integration phase is acceptable.

4.3.2 Release Groupings

Description: In this approach, the development organization aims to break the sys-
tem into groups of components that are pre-integrated, i.e., a release group, whereas
the composition of the release groups is performed using high decoupling tech-
niques such as SOA-style (Service-Oriented-Architecture) interfaces [16]. At the
level of a release group, the integration-centric approach is applied; whereas at the
inter-release group level coordination of development is achieved using periodic
releases of all release groups in the stack.

Architecture: In this approach, the architecture has been decomposed into its
top-level components,.which. are aligned with the release groupings. Often, the
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organization has run into the limits of the previously discussed approach and has
taken the action to decouple the top-level parts of the system.

In the typical scenario, the organization evolves from an integration-centric to a
release groupings approach. As the organization has allowed for many dependen-
cies between components, the management of interfaces between release groupings
often is insufficient. The definition of the APIs does not sufficiently decouple release
groupings from each other. APIs may expose the internal design of the release
grouping or are too detailed causing many change scenarios to require changes to
the APIs.

Process: Similar to the architecture, the process is now also different between
the release groupings, but the same as the previously discussed approach within
the release grouping. The decoupling allows the release groupings to be composed,
with relatively few issues. This is often achieved by more upfront work to design
and publish the interface of each release group before the start of the development
cycle.

In several of the cases that we studied, the organization failed to realize
that processes needed to vary between and inside release groupings. This lead
to several consequences, including features that cross release groupings tend to
be underspecified before the start of development and need to be “worked out”
during the development by close interaction between the involved teams. This
defeats the purpose of release groupings and causes significant inefficiency in
development.

Organization: As discussed in the description, the allocation of release group-
ings often mirrors the geographical location of teams and the definition of release
grouping interfaces the level of the geographical boundaries significantly decreases
the amount of communication and co-ordination that needs to take place and,
consequently, efficiency is improved.

In our cases, we found that working geographically distributed increases the
amount of time required to accomplish tasks due to cultural differences, time zone
differences and engineers need to spend more time in co-ordinating their work
across the globe. Engineers have to allocate more of their time for global coor-
dination, which makes development less efficient. Although the release groupings
approach addresses this concern to some extent, we found that the coordination cost
still is quite significant.

Success factors: The release grouping approach is particularly useful in situations
where teams responsible for different subsets of components are geographically
dispersed . Aligning release groupings with location is, in that case, an effective
approach to decreasing the inefficiencies associated with co-ordination over sites
and time zones. A second context is where the architecture covers a number of
application domains that require high integration within the application domain, but
much less integration between application domains. For instance, a system consist-
ing of video processing and video storage functionality may require high integration
between the video processing components, but a relatively simple interface between
the storage on processing parts of the system. In this case, making each domain a
release grouping.is.a.good.design.decision.
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4.3.3 Release Trains

Description: In the third approach, the decoupling is extended from groups of com-
ponents to every component in the system. All interfaces between components are
decoupled to the extent possible and each component team can by and large work
independently during each iteration. The key coordination mechanism between the
teams is an engineering heartbeat that is common for the whole R and D organi-
zation. With each iteration, e.g., every month, a release train leaves with the latest
releases of all production-quality components on the train. If a team is not able to
finalize development and validation of its component, the release management team
does not accept the component. Once the release team has collected all components
that passed the component quality gates, the next step is to build all the integrations
for the software product line. For those components that did not pass the component
quality gates, the last validated version is used. The integration validation phase has
two stages. During the first stage, each new release of each component is validated
in a configuration consisting of the last verified versions of all other components.
Component that do not pass this stage are excluded from the train. During the second
stage, the new versions of all components that passed the first stage are integrated
with the last verified versions of all other components and integration testing is per-
formed for each of the configurations that are part of the product family. In the case
where integration problems are found during this stage, the components at fault are
removed from the release train. The release train approach concludes each iteration
with a validated configuration of components, even though in the process a subset
of the planned features may have been withdrawn due to integration issues between
components. The release trains approach provides an excellent mechanism for orga-
nizational decoupling by providing a heartbeat to the engineering system that allows
teams to synchronize on a frequent basis while working independently during the
iterations.

Architecture: The architecture now needs to be fully specified at the com-
ponent level, including its provided, required and configuration interfaces. No
dependencies between components may exist outside the interfaces of the
components.

In a web service-centric architecture inside an organization, the teams associated
with components develop independently while maintaining backward compatibility
for their provided interfaces. This allows each team to release at the end of the devel-
opment cycle and, after a, typically automated, testing effort the new component
versions are released at the same time.

Process: The key process challenges, as discussed above, are the pre-
development cycle work around interface specification and content commitment
and the process around the acceptance or rejection of components at the end of
the cycle. In addition, especially when the organization uses agile development
approaches, sequencing the development of new features such that dependent,
higher level features are developed in the cycle following the release of lower
level features allows for significantly fewer ripple effects when components are
rejected.
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The release train approach allows team to work independently from each other
during the development of the next release, but it still requires all teams to release
at the same point in time. The process of testing the new version of compo-
nents consists of two stages. First, each new version of a component is tested
in the context of the released versions of all other components. This verifies
backward compatibility. In the second stage, the new versions of all components
are brought together to verify the newly released functionality across component
boundaries.

Organization: As the need for co-ordination and communication between the
teams has been reduced and is much more structured in terms of time and con-
tent, the organization can be distributed without many of the negative consequences
found in the earlier approaches.

In one of the companies that we studied, this approach reduced the coordina-
tion cost quite considerably. Teams co-ordinated around the release of new versions
of components to plan for the next release. However, limited centralized plan-
ning was necessary. Instead, teams co-ordinated with each other at the interface
boundaries.

Success factors: The release train approach is particularly suited for organizations
that are required to deliver a continuous stream of new functionality in their prod-
ucts or platform; either because new products are released with a high frequency or
because existing products are released or upgraded frequently with new functional-
ity. The organization has a business benefit from frequent releases of new functional-
ity. Companies that provide web services provide a typical example of the latter cat-
egory. Customers expect a continuous introduction of new functionality in their web
services and expect a rapid turnaround on requests for new functionality. The release
train approach does require a relatively mature development organization and
infrastructure. For instance, the amount and complexity of validation and testing
that is required demands a high degree of test automation. In addition, interface man-
agement and requirements allocation processes need to be mature in order to achieve
sufficient decoupling, backward compatibility and independent deployment of
components.

4.3.4 Independent Deployment

Description: The independent deployment approach assumes an organizational
maturity that does not require an engineering heartbeat (a heartbeat in the engi-
neering system allows teams to synchronize on a frequent basis while working
independently during iterations) including all the processes surrounding a release
train [18]. In this approach, each team is free to release new versions of their
component at their own iteration speed. The only requirement is that the com-
ponent provides backward compatibility for all components dependent on it. In
addition, the teams develop and commit to roadmaps and plans. The lack of an
organization-wide heartbeat does not free any team from the obligation to keep
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their promises. However, the validation of a component before being released is
more complicated in this model as any component team, at any point in time, may
decide to release its latest version.

Architecture: Similar to the release trains approach, the architecture needs to
be fully specified at the component level. Architecture refactoring and evolution
is becoming more complicated to co-ordinate and execute on.

In one of the cases, the business realities forced some fundamental architectural
design decisions to be revoked and replaced with alternative solutions. This required
the independent teams to resort to significantly more coordinated ways of working
until the architecture had stabilized after several release iterations.

Process: The perception in the organization easily becomes that there no longer
is an inter-team process for development as any team can develop and release at their
leisure. In practice, this is caused because the process is no longer a straightjacket
but more provides guardrails within which development takes place. The cultural
aspects of the software development organization, especially commitment culture
and never allowing deviations from backward compatibility requirements, needs to
be deeply engrained and enforced appropriately.

As the process does not enforce joint releasing of components, any component
team can release at their own frequency and time. This requires an even higher
degree of automation and coverage of the testing framework in order to guarantee
the continued functioning of the overall system.

Organization: Similar to the release trains approach, the organization can take
many shapes and forms as long as the development teams associated with a
component are not distributed themselves.

As the process and geographic co-location of the development organization
is not longer something that one can rely on, the key organization principle is
now centered on the software architecture. Co-ordination is no longer process
and human-driven, but instead is performed via the software architecture. As a
consequence, where as team leads and engineers talk very little to other teams,
the architects in the organization typically increase their interaction to guide the
evolution of the architecture.

Success factors: The independent deployment approach is particularly useful in
cases where different layers of the stack have very different “natural” iteration
frequencies . Typically, lower layers of the stack that are abstracting external infras-
tructure iterate at a significantly lower frequency. This is both because the release
frequency of the external components typically is low, e.g. one or two releases per
year, and because the functionality captured in those lower layers often is quite sta-
ble and evolves more slowly. The higher layers of the software stack, including the
product-specific software, tend to iterate much more.

The key factor in the successful application of the independent deployment
approach is the maturity of the development organization. The processes surround-
ing road mapping, planning, interface management and, especially, verification and
validation, need to be mature and well supported by tools in order for the model to
be effective.
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4.3.5 Open Ecosystem

Description: The final approach discussed is an approach in which inter-
organizational collaboration is strived after. Successful software product lines are
likely to become platforms for external parties that aim to build their own solutions
on top of the platform provided by the organization. Although this can, and should,
be considered as a sign of success, the software product line typically has not been
designed as a development platform and providing access to external parties with-
out jeopardizing the qualities of the products in the product line is typically less than
trivial. Even if the product line architecture has been well prepared for acting as a
platform, the problem is that external developers often demand deeper access to the
platform than the product line organization feels comfortable to provide.

The typical approach to address this is often twofold. First, external parties that
require deep access to the platform are certified before access is given. Second,
any software developed by the certified external parties needs to get validated in
the context of the current version of the platform before being deployed and made
accessible to customers.

Although the aforementioned approach works fine in the traditional model, mod-
ern software platforms increasingly rely on their community of users to provide
solutions for market niches that the platform organization itself is unable to provide.
The traditional certification approach is infeasible in this context, especially as the
typical case will contain no financial incentive for the community contributor and
the hurdles for offering contributions should be as low as possible. Consequently,
a mechanism needs to be put in place that allows software to exist within the plat-
form but to be sandboxed to an extent that minimizes or removes the risk of the
community-offered software affecting the core problem to any significant extent.

The open ecosystem development model allows unconstrained releasing of com-
ponents in the ecosystem not only by the organization owning the platform but by
also by certified 3rd parties as well prosumers and other community members pro-
viding new functionality. Although few examples of this approach exist it is clear
that a successful application of this approach requires run-time, automated solu-
tions for maintaining system integrity for all different configurations in which the
ecosystem is used.

Architecture: The main architectural focus when adopting this approach is to
provide a platform interface that on the one hand opens up as much useful plat-
form functionality for external developers and on the other hand provides an even
higher level of quality and stability as the evolution of interfaces published to the
ecosystem is very time and effort consuming as well as constraining. In addi-
tion, security precautions have to be embedded in the interface to provide the
best defense mechanisms for accidental or intended harm to the customers in the
ecosystem.

Especially in the case where external developers can release directly to customers
without involvement of the platform company, the architecture has to be devel-
oped defensively at its external interfaces. In two of the cases that we studied, this
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translated into the implementation of an elaborate security model in the platform
architecture to control access of external code in the platform.

Process: As the ecosystem participants are independent organizations, no com-
mon process approach can be enforced, except for gateways, such as security
validation of external applications. However, each limitation put in place causes
hurdles for external developers that inhibit success of the ecosystem, so one has to
be very careful to rely on such mechanisms.

In one of the cases that we studied, the platform company felt obliged to intro-
duce a certification process for externally developed code as the risk for customers
was considered to be too great.

Organization: The organization in this approach is best described as a networked
organization, i.e., the platform providing organization has a rather central role, but
the external developers provide important parts, often the most differentiating and
valuable parts of the functionality.

The key difference that the two of the cases that we studied struggled with is
that the business case for the platform organization is not necessarily aligned with
the business case of external developers. Although the platform company should
strive to achieve this situation, there is a natural tension in terms of monetization:
the platform company has to leave sufficient value in the ecosystem for external
developers to have an acceptable return on investment.

Success factors: The open ecosystem model is a natural evolution from the
release train and independent deployment models when the organization decides to
open up the software product line to external parties, either in response to demands
by these parties or as a strategic direction taken by the company in order to drive
adoption by its customers.

The key in this model, however, is the ability to provide proper architectural
decoupling between the various parts of the ecosystem without losing integrity from
a customer perspective. In certain architectures and domains, the demand for deep
integration is such that, at this point in the evolution of the domain, achieving suf-
ficient decoupling is impossible, either because quality attributes cannot be met or
because the user experience becomes unacceptable in response to dynamic, run-time
composition of functionality.

Two areas where this approach is less desirable are concerned with the platform
maturity and the business model. Although the pull to open up any software product
line that enjoys its initial success in the market place, the product line architecture
typically goes through significant refactoring that can’t be hidden from the prod-
ucts in the product line or the external parties developing on top of the platform
defined by the architecture. Consequently, any dependents on the product line archi-
tecture are going to experience significant binary breaks and changes to the platform
interface. Finally, the transition from a product to a platform company easily causes
conflicts in the business models associated with both approaches. If the company is
not sufficiently financially established or the platform approach not deeply ingrained
in the business strategy, adopting the open ecosystem approach fail due to internal
organizational conflicts and mismatches.
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4.4 Conclusion

Collaboration can be viewed as the most important lever for achieving high qual-
ity, efficient and effective software engineering practices and results in virtually
any software developing organization. Although collaboration has been compli-
cated, several trends increase the complexity of managing dependencies between
software development teams and organizations. These trends include the increasing
adoption of software product lines, the globalization of software engineering and
the increasing use of and reliance on 3rd party developers in the context of soft-
ware ecosystems. The trends share as a common characteristic that the coupling
between the software assets as well as between the organizational units is increased.
Consequently, decoupling mechanisms need to be introduced to address the increase
in coupling.

In this paper, we have discussed the challenges of decoupling approaches for
large-scale software collaboration from an architecture, process and organization
perspective. From extensive action research involving several cases, we found five
different approaches on a continuum ranging from low to high decoupling. We illus-
trated the challenges of these approaches in specific instances from the case study
examples. Our experience shows that these challenges are caused due to the appli-
cation of a collaboration model that is not applicable for a specific situation. In most
cases that we studied, significant problems were caused by the application of a col-
laboration approach that did not provide sufficient decoupling and could or were
addressed by the introduction of a more decoupled approach to collaboration.

The contribution of the paper is that it presents a clear overview of possible
collaboration approaches for large-scale software development and their particu-
lar challenges where surprisingly little literature exists in this area. With this paper
we give an insight in different decoupling approaches, their specific challenges and
their success factors (applicability).
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Chapter 5

Collaboration, Communication

and Co-ordination in Agile Software
Development Practice

Hugh Robinson and Helen Sharp

Abstract This chapter analyses the results of a series of observational studies of
agile software development teams, identifying commonalities in collaboration, co-
ordination and communication activities. Pairing and customer collaboration are
focussed on to illustrate the nature of collaboration and communication, as are two
simple physical artefacts that emerged through analysis as being an information-
rich focal point for the co-ordination of collaboration and communication activities.
The analysis shows that pairing has common characteristics across all teams, while
customer collaboration differs between the teams depending on the application and
organisational context of development.

5.1 Introduction

Agile software development is a group of software engineering methodologies, e.g.,
eXtreme programming (XP) [4] Scrum [26] Crystal [11] that became popular in the
early 2000s. Agile advocates claim to increase overall software developer produc-
tivity, deliver working software on time, and minimise the risk of failure in software
projects. Whilst its effectiveness and applicability remain uncertain, (e.g., [1, 19])
it is attracting increasing interest from the software engineering community, (e.g.,
[6, 24]). A summary of what is involved in agile software development is given in
this description by Cockburn [10: 29].

It calls for all the developers to sit in one large room, for there to be a usage expert or
“customer” on the development staff full time, for the programmers to work in pairs and
develop extensive unit tests for their code that can be run automatically at any time, for
those tests always to run at 100% of all code that is checked in, and for code to be developed
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in nano-increments, checked in and integrated several times a day. The result is delivered to
real users every 2—4 weeks.!

In exchange for all this rigor in the development process, the team is excused from pro-
ducing any extraneous documentation. The requirements live as an outline on collections of
index cards, and the running project plan is on the whiteboard. The design lives in the oral
tradition among the programmers, in the unit tests, and in the oft-tidied-up code itself.

Agile software development produces working software by technical practice
that also creates, and depends upon, intimate social activity which emphasises close
collaboration, co-ordination and communication within the development team. This
chapter explores the detailed nature of this social activity and its relationship to
and embodiment in the technical practice. The analysis is based on the results of
empirical studies we have carried out with six co-located mature XP software devel-
opment teams, covering a range of organisational settings, application domains
and development environments. Our approach to both data collection and analy-
sis is ethnographically-informed [25] which results in a validated account of the
detailed collaboration, co-ordination and communication mechanisms employed
and their relationships to each other and to technical practice. The approach is not
hypothesis-driven, but data-driven.

The analysis is in two parts. First, in section 5.3, we discuss and demonstrate
how the reality of agile technical practice involves collaborative and communica-
tive social activity. This is illustrated with consideration of two aspects of technical
activity which have key social characteristics: pairing and customer collaboration.
Second, in section 5.4, we analyse the critical work of co-ordination of collabora-
tive and communicative activity via the mechanisms associated with key physical
artefacts: story cards and the Wall. As background to this analysis, we introduce XP
as a social activity (section 5.1.1), and describe the fieldwork on which the analysis
is based (section 5.2). Following on from the analysis, we discuss the significance
of our findings in Section 5.5, and end with our conclusions in Section 5.6.

5.1.1 XP as a Social Activity

XP is commonly perceived in terms of technical practice. XP articulates its technical
practice as a set of mutually supportive components — practices — that include, for
example, small releases, simple design, testing, refactoring, pair programming and
continuous integration. In [3] 12 practices are listed, which are refined and extended
into 13 primary practices and 11 corollary practices in [4]. Beck states that the prac-
tices interact to mutually support one other: “Any one practice doesn’t stand well on
its own (with the possible exception of testing). They require the other practices to
keep them in balance.” [3: 69]. Consequently, any analysis and evaluation of one of

! Time-boxed units of development lasting 1-4 weeks are called “iteration’s” in XP; time-boxed
units.of development.around. four.weeks.are.called “sprints” in Scrum.



5 Collaboration, Communication and Coordination 95

the XP practices has to take into account the manner in which it works in concert
with other practices.

As well as being technical practice, XP is also fundamentally a social activity,
with explicit values, such as communication and respect, and explicit principles,
such as humanity and reflection [4]. Interviewing Beck, Highsmith observes that
his “vision is about changing social contracts, changing the way people treat each
other and are treated in organizations” and quotes Beck’s response to an article that
attempted to revise XP: “I was furious that someone would strip out all of the social
change and still call it XP.” [16: 53]. Beck states that: “Just as values bring purpose
to practices, practices bring accountability to values.” [4: 14]. Such claims by XP
advocates as to the importance of social activity are sustained by several researchers,
(e.g., [9, 20, 31]), and practitioners, (e.g., [11, 21]).

The reliance of software engineering practice on purposeful social activity has
been recognised elsewhere, (e.g., [14, 30]), and so XP is not unique in this respect.
However the detailed nature of this social activity and its relationship to and embod-
iment in technical practice has not been investigated and analysed. In this chapter
we focus specifically on exploring and analysing XP’s collaborative, communicative
and co-ordinating dimensions. Our account of social activity will meet two impor-
tant requirements. First, it will be an account that attends to the technical as well as
the social. Second, it will be rooted in the reality of what practitioners do — XP in
the wild,” so to speak — and that demands empirical fieldwork.

5.2 Fieldwork

Our findings represent a synthesis of results from a series of six empirical studies of
software practice. Our empirical studies were all fieldwork studies of teams based
in industry, engaged in software development, and using XP. Each team was mature
at the time of the fieldwork; that is, they had successfully transitioned to XP? and
had been using all of Beck’s original 12 practices [3] for at least a year. Each team
consisted of software developers and other team members carrying out various roles
providing business, project management and specialist technical skills. The number
of developers in the team varied from 23 to 5 and the overall team size varied from
7 to 26 (see Table 5.1).

For example, Team C had two business development staff and a project manager;
another — Team E — had a project manager, two business analysts, a database admin-
istrator and a technical database user. The business settings of the six teams varied

2 ¢f. Edwin Hutchins’ Cognition in the Wild, MIT Press, Cambridge, MA, 1995.

3 Transitioning to XP is a process that can take place over a weekend or can require several months,
depending on a range of factors such as team size, organizational culture and team member attitude,
for example.
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Table 5.1 Team composition and business setting

Team Overall team size Number of developers Business setting

A 12 8 Web-based intelligent adverts

B 23 16 Document use in multi-author
work environments

C 26 23 Travel information web pages
& alerts

D 15 12 Large international bank

E 10 5 Large international bank

F 7 5 Large telecommunications
company

(see Table 5.1). Each team was physically co-located, essentially in a large,
open room.

Each team was studied for a period of a week (sometimes with additional spells of
observation, so that, in effect, iterations of more than a week were accommodated),
with further follow-up meetings to discuss findings. An ethnographically-informed
approach [25] was taken with the researcher immersing themselves in the day-to-
day business of XP development, documenting practice by a variety of means that
included contemporaneous field notes, photographs/sketches of the physical layout,
copies of various documents and artefacts, and records of meetings, discussions
and informal interviews with practitioners. Data was analysed ethnographically
and thematically, emphasising validation through the seeking of confirming and
disconfirming instances. The thematic, ethnographic analysis of the data was com-
plemented with an analysis from a cognitive dimensions [15] theoretical perspective
for some of the data [28]. An analysis informed by a distributed cognition theoret-
ical perspective, based on DiCOT (Distributed Cognition for Teamwork) [5] was
also employed for the data collected with three of the teams [27].

5.3 The Social in the Technical: Collaboration
and Communication

The Agile Manifesto [2] emphasises collaboration and interactions, and the reality
of XP software development offers evidence that this emphasis is borne out in prac-
tice. Observing practice makes it clear to the researcher that the work of an XP team
visibly and continually involves collaboration and communication — and that collab-
oration and communication are part of the technical business of creating working
software. In this section we explore and analyse this intimate relationship between
the social and technical via two key XP practices which illustrate this relationship:
pairing and customer collaboration. We find that pairing has considerable com-
monalities across the six teams, while the detail of customer collaboration varies,
dependent.on.the team’s. specific situation.
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5.3.1 Pairing

By pairing we refer to the social activity of two team members (usually developers*)
sitting together and working. Pairing work encompasses several of the mutually
supportive components of technical practice: pair programming, test-first coding,
refactoring, simple design and continuous integration. That is, pairing does not just
involve two programmers together writing production code: it also involves test-
driven development, the refining of code structure, the removal of complexity as
soon as it is discovered, and the integration of new, or changed, code into the existing
code base via the 100% passing of automated tests.

The collaborative activity of pairing is dominated by communication: talk
between the two programmers, as they discuss, investigate, reason, understand and
develop the task at hand. Understanding is shared and affirmed (“So, are you saying
there’s an AddAllocation? Yes.”)’ and action is negotiated and carried out (“Why
don’t we do the simplest thing and put in a test... that’s easy to test.”, “It’s the
simplest thing and it’s compatible with refactoring.”), lack of progress is acknowl-
edged (“So, detecting everything else wasn’t a very good idea”) and completion
signalled (“I’ll commit that!”). Silence is also an accepted feature of the talk, as
code is being run through a series of tests, when an unexpected “red bar” (failing
test) is encountered or simply when thought is required.

In our fieldwork, the talks, and the talkers’ roles, were fluid depending on the
nature of the task, the developers involved and the progress being made. For exam-
ple, an experienced developer would pair with a less-experienced colleague so that
the experienced developer could gain familiarity with portions of the code base
that the less-experienced colleague had been working on. Alternatively, experienced
developers may pair where the portion of the code base being modified is particu-
larly complex or the required change is tricky. In particular, contrary to claims by XP
advocates, (e.g., Beck [3: 58]), there was no evidence of any clear split in roles, with
one developer controlling the keyboard and mouse to produce code while the other
was thinking more strategically. Rather, both developers would adopt these roles
interchangeably as the talk progressed and the possession and use of the keyboard
and mouse oriented to the talk (and not the other way around); this is confirmed
by others and a more detailed study of this phenomenon is reported in [7]. The talk
sometimes involved more than the two developers who were pairing, when someone
in another pair would overhear the talk and offer their clarification or understanding
(if it were part of the code base in which they had expertise). Indeed, the ability of
pairs to peripherally overhear each other was taken for granted as desirable and was
exploited to make progress for the team.

As well as involving developers, the talk also actively involved the code and its
various manifestations in terms of the windows and panes of the many development

4 We have observed pairings of a developer with a graphic designer, and a developer with a business
analyst.

5 Such italicizeds bracketed-materialsin.quotesyis, an illustrative extract from our field notes.
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tools employed by the developers. The conversational turns of this third partner were
orchestrated by the developers as they summoned and dismissed panes, launched
tools, etc. The response of the third partner could — and would — shape the talk of
the developers, demanding close attention to what the code was expecting of them.
The code was a central focus in the talk.

Pairing is intimate and intense at both the social and technical level and this was
reflected in the developers’ organisation and management of their working environ-
ment in terms of time, relationships between individuals and space. The organisation
of the working day ensured that pairing did not take up much more than 5-6 hours
in the day — more than this was regarded as stressful and not sustainable. Similarly,
the period of pairing itself was actively managed, with recognition of the need for
breaks. In all our teams, pairs would swap around regularly — anything from half a
day to several days may be spent in one pair, depending on the functionality being
worked on. However, framed by this organisation and management, pairing was vis-
ibly a period where developers both expected and displayed great concentration and
focus.

Whilst pairing sessions themselves are intense and intimate, pairing as an ongo-
ing activity — on a daily, week-in, week-out basis — has its own intensity that
requires a level of maturity and social management from developers to accom-
modate inevitable clashes of programming style, attitude and personality. The
development teams studied recognised this in a variety of ways. The leader of one
team monitored and adjusted pairing to ensure active and effective engagement.
Another team likened the individual relationships of pairing to those of marriage
and sought to display all the skills of compromise, sensitivity and negotiation that
this required. And another team made use of a qualified social worker to help the
team understand the overall social health of its relationships. On a daily basis, many
of our teams kept a record of pairings, e.g. a pairing ladder that highlighted common
and uncommon pairings to make sure that rotation was evenly spread among team
members.

The organisation of the space of the working environment oriented to the nature
of pairing. This orientation ranged from the reconfiguration of desks for pairing to
the separation of space into an area for pairing, as well as areas for activities that
did not involve pairing, such as meetings, email and phone use.

Collaboration and communication occurs between pairs as well as within pairs.
Apart from the exploitation of peripheral awareness mentioned above, collaboration
and communication also occurs between pairs in the “stand up.” The stand up is
a daily meeting, taking place early in the day, before pairing begins. All develop-
ers attend and the meeting is short (no more than 15 min) — and people stand for
the duration. The meeting uncovers the collaboration and communication that must
take place across the developers in the coming day and initiates its co-ordination.
This is achieved by each developer quickly reporting in a three-part fashion: what
they’ve done since the last stand up that others need to know about, what they will
be doing next that others need to know about, and what if any obstacles are holding
them back (and that others can help with). The stand up emphasises reporting, and
prolonged.discussion.does.not.take place. As a result of what is reported, various
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discussions will take place during the day, although rarely in the setting of another
meeting.

5.3.2 Customer Collaboration

By “customer collaboration” we refer to the activity associated with the on-
site customer component of XP technical practice, where the customer generates
requirements, answers developers’ queries and provides understanding, sets priori-
ties, and provides feedback on iterations. Beck describes the on-site customer thus:
“A real customer must sit with the team, available to answer questions, resolve dis-
putes, and set small-scale priorities. By ‘real customer’ I mean someone who will
really use the system when it is in production.” [3: 60]. That is, in the ideal XP
world of Beck’s advocacy, the people filling the on-site customer role would be
co-located with the developers; would “speak with one voice”; would be potential
users of the system; and would be collaborative, representative, authorised, commit-
ted and knowledgeable. It is an accepted fact of XP practice that this ideal is rarely
realised for a variety of reasons: client organisations may be unwilling or unable to
spare people to become part of the development team; different customers may have
conflicting requirements; potential users of the system may not have the authority
to identify and prioritise system features, whereas decision makers may not under-
stand the needs of users; and so on. XP practitioners have recognised this fact and
devised approaches and methods to deal with the gaps between the ideal and the
reality, (e.g., [22, 23, 29]). These approaches and methods are contingent upon, and
are shaped by, the specific context and circumstances of the development team and
who is taking the role of the “customer.”

To demonstrate the nature of customer collaboration we briefly describe the
collaborative and communicative activity of each of our six teams, focussing on
interactions between the customer and developers.

The first setting involved a team where the on-site customer role was carried
out by marketing personnel who dealt directly with individual paying clients on
a regular basis. This direct involvement with the client brought great clarity and
authority to the development process. However, the role of marketing personnel
demanded that they respond quickly (minutes rather than hours) to requests from
clients. Usually, such requests necessitated consultation (and hence considerable
interaction) with developers. Much as the developers valued customer collaboration,
the frequency of such interruptions proved too distracting given the demands for
focus and concentration from the intensity of pairing. The solution explored was
that of an “exposed pair”: each day a pair of developers was identified who could
be interrupted if a client had an urgent request. Such a solution could only work
because of the shared understanding and responsibility created by other XP practices
including pairing.

In the second of our settings, the on-site customer role was carried out by project
managers who worked with marketing but were firmly part of the development
team...As.such, they understood. both.the, market requirements and positioning of
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the company’s various products and the needs of the software development that
would create those products. Project managers organised a considerable amount of
the detail of software development, as well as orchestrating and managing requests
from marketing. They therefore managed a complex set of interactions between
various groups and individuals. It was noticeable that pairing was more “interrupt-
ible” here: ad hoc discussions involving pairs and a project manager would naturally
occur and often would involve individuals from another pair, or testers, or the team
coach. Once the particular issue was resolved, pairing would resume and there was
no sense that what had occurred was an “interruption.” A variation of this occurred
with our third setting where the team were the basis of a small software company
with a flat organisational structure. Here, the on-site customer role was carried
out by the handful of individuals who were management with collaboration and
communication activities that were similar to those described above.

Our fourth setting concerns a team working in a large international bank, devel-
oping the software that would support the institution’s management of operational
risk. The management of operational risk was a new regulatory body requirement
and hence the details of the institution’s methodology were taking time to emerge.
The on-site customer role was carried out by two individuals with expertise in
the institution’s methodology but it was a new area and there were sponsors and
stakeholders, senior to the two individuals, who needed to finalise and agree the
methodology. As a consequence, requirements were often subject to change. In addi-
tion, the on-site customer was not the intended user of the various applications, and
the institution had a strong tradition of conventional, plan-driven software devel-
opment with all its expectations of how sponsors, stakeholders and users interact
with software developers. The on-site customer was also not co-located with the
developers although relatively close and in the same building. Importantly, the on-
site customer had significant responsibility for the overall success of the applications
under development. All of these factors made collaboration and communication par-
ticularly demanding for both the on-site customer and the developers. Both worked
actively to manage the relationship and overcome problems, and reported positively
on this aspect at a retrospective. Developers proactively involved the customer at a
range of opportunities, including planning meetings, seeking them out after a stand-
up, and ensuring their involvement in the team’s coffee breaks. Considerable effort
was expended in developing a shared understanding of the risk methodology via
adhoc meetings.

The other team in this same bank (our fifth team) were migrating a range of exist-
ing independent databases, each with their own, different schema, to one integrated
database, with its own, new schema. For them, the customer role was taken by a
technical database user who had many years’ experience with the existing databases.
He was co-located with the team, but not always available. Communication and col-
laboration here were complicated by the inclusion of business analysts who were
creating the new database schema, and hence needed to communicate with both
the customer and the developers. This required three-way communication and co-
ordination and a double stand-up meeting each morning — one only for developers
and.one with.developers,.customer.and.business analysts. All of this was overseen
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by a project manager who was responsible for liaising with the offshore database
administrators and the team’s immediate line management.

Our final setting concerns that of a team working in a large telecommunications
company. The customer (a representative of a large department who were the main
stakeholder in the work) was not on-site and was located several hundreds of miles
from the developers. Interaction between the customer and the developers routinely
took place once a week via a telephone conference, with other calls during the week
as and when queries arose. A wiki was also used to share information. Despite the
customer and developers rarely meeting each other, developers reported that this
arrangement worked effectively because they had worked with the system under
development for several years and believed that they had a good understanding of
what was likely to be acceptable to the customer and what was not.

In summary, collaboration and communication with the customer is rich and var-
ied but also is highly situated. As such, and unlike pairing, it is difficult to identify
recurring collaboration activities and communication patterns. For example, it is
highly unlikely that the approach taken in our final setting would work so effectively
in the situation of our fourth setting.

5.4 The Social in the Technical: Co-ordination

We now consider how these collaborative and communicative activities in XP
practice are co-ordinated. Specifically, we analyse the co-ordinating role of two
key physical artefacts identified through our analysis: the Wall and story cards.
Figure 5.1 is an example of the Wall and two story cards from our fieldwork. The
“Wall” is our term but it is a term, and a role, that practitioners readily recognised
and agreed with in feedback sessions with them on our fieldwork. The Wall is an
example of the Informative workspace primary practice of Beck & Andres [4].
However, Beck & Andres describe the primary practice simply in terms of “An
interested observer should be able to walk into the team space and get a general idea
of how the project is going in 15 seconds”. They neither explicate nor advocate the
key, detailed co-ordinating role of the Wall.

5.4.1 Story Cards

Stories are the key unit of communication between the customer and developers and
are small units of functionality for which working code can be developed after a day
or maybe two days’ effort. Such fine granularity is facilitated by the identification
and refinement of “epic stories” and larger chunks of functionality [12, 13]. Jeffries
[18] suggests that there are three parts (the three “C”s’) to a story: the Card, the
Conversation and the Confirmation.

The Card: Stories are usually written on... index cards. Cards are small, physically indepen-
dent.entities. Theirsize constrains.the.amount.of information that can be written on it, while
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Fig. 5.1 An example of the wall and story cards from one fieldwork site

its independent nature means that it can be annotated and manipulated during meetings or
discussions.

The Conversation: Because the card can only hold a limited amount of information, the
development team has to talk to others in order to explore the detail of the story and to refine
their understanding of it.

The Confirmation: Testable and measurable user acceptance tests are agreed between the
customer and the development team, so that everyone concerned understands when a story
has been implemented successfully.

Each of these three parts has strong social characteristics that are significant in
co-ordination: the card’s independent, almost ubiquitous, nature; its role as a sum-
mons for shared understanding; and its insistence on an operational definition of
completion and closure.

Stories are usually thought of as being customer-initiated and as being about
customer-visible functionality. Our fieldwork revealed that stories can also be
developer-initiated and be about developer-required technical change such as refac-
toring. Furthermore, a story is often broken down into smaller units, known as tasks.
For example, in Fig. 5.1, the top card is a story card (“Show travel news headlines
and details for London”) and the bottom card is a task card (“Create WML travel
news pages”) which is one of the tasks of the story. Figure 5.1 does not show that,
in fact, the top story card is green and the bottom task card is white, so that the
use of different coloured cards indicates the level of granularity. The use of differ-
ent coloured cards here is deliberate and a common practice amongst teams. All of
the teams we studied made use of stories and all, with one exception, made use of
i i a.team which had moved from the use of
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index cards to an electronic, Word document. This Word document permitted con-
siderably more detail about what was required than would have been possible on an
index card and also included full details of the acceptance test.

At the start of an iteration, an iteration planning meeting is held to determine
which stories will be developed in the coming iteration. The cards that are being
considered for the iteration® are often physically dealt on to the meeting table. The
planning meeting is collaborative with all team members and the on-site customer
being involved. Customers are asked to prioritise stories for the coming iteration,
and developers ensure that they have estimated how long each story will take and
that the cards are annotated with this information (such an estimate appears in the
bottom left corner of the (top) story card in Fig. 5.1). Working together, the team
determines how many and which stories will be included in the coming iteration.
Frequently, the physical space of the meeting table and the independent nature of
the cards are used to group and arrange cards to aid this process.

5.4.2 The Wall

Once the stories for the coming iteration have been determined they are taken and
arranged on the Wall. The Wall may be a convenient physical wall, as in the case
of Fig. 5.1, or it may be whatever is to hand. Examples from our fieldwork include
the vertical front surface of a collection of filing cabinets (see Fig. 5.2), a flip chart,
and a large (foldable and highly portable) piece of cardboard. That is, it matters to
teams that they have a Wall and they will create one in the most difficult of settings.
Even the team who held stories electronically had a cut-down version of the Wall.

The exact way in which each team arranged, and manipulated, story cards on
the Wall varied and we give here a simplified, but nevertheless, essential description
where the team worked in iterations of 3 weeks. The Wall is divided into three main
sections, one for each week of the iteration. The section for a week is sub-divided
into a “to do” area and a “done” area (see Fig. 5.3). At the start of the iteration, the
team considers how the cards need to be distributed across each of the 3 weeks and
carefully construct the Wall accordingly. Initially, only the “to do” area within the
Wall section for each week has any cards and the “done” area is empty. Within the
“to do” areas, cards are arranged so that task cards are with their associated story
card.

Following the first stand up of the iteration, some cards are removed from the “to
do” area of the first week — each card being taken by a pair of developers. The Wall
is annotated to indicate that a card has been moved (e.g., in Fig. 5.3 by the dotted
rectangle). In the case of the Wall of Fig. 5.1, a ghost of the moved card would be
drawn on the glass so that the card’s position on the Wall was preserved. The pair

6 Software is released after a series of iterations, typically every few months. There is a layer of
release planning, which helps scope out the functionality of an iteration that we have not touched
on here.
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Fig. 5.2 Filing cabinets used as the wall
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Fig. 5.3 A schematic of the wall shown in Fig. 5.1
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takes the card to a workstation, stick the card to the monitor, and engage in pairing.
Once they have produced tested, integrated working software, they annotate the card
with their initials, the actual time taken, and a large tick to indicate that it has been
completed and return the card to the Wall,” placing it in the “done” area for the
week, erasing the annotation in the “to do” area that indicated the card was being
worked on by a pair.

Daily stand ups are conducted around the Wall, with individuals often pointing at
the Wall or taking cards from the Wall. By taking a card from the Wall, a developer
signals that they want to speak about the card and that they are exercising a form of
ownership® over the work it represents. During the day, developers often look at the
Wall when considering progress, or the work left to be done.

At the start of the next week, the Wall is carefully studied by the team and rear-
ranged appropriately if the team has not completed all the stories initially allocated
to the week that has just finished.

This essential account makes it clear that the Wall and its associated cards are
not just visible signs of progress for visitors, managers and team members, as the
advocacy literature of Beck [3] or Cockburn [11] would suggest. Rather, they are
an information-rich focal point for the co-ordination of collaboration and commu-
nication. The Wall and its associated story cards work in a complementary manner.
The card is annotated in strict ways as it progresses through the development cycle,
but the card itself represents too small a chunk of development to stand alone — it is
important to see the wider overall picture of progress and activity. The Wall provides
this overview, and is designed spatially to carry extra information which comple-
ments the detail shown on each card. Much of the mechanics we have described —
card annotation, displaying stories on a wall, taking cards to a workstation when
implementation has started, etc — are focussed on co-ordination of the team mem-
bers’ efforts. However the way in which this co-ordination is achieved underpins the
collaborative and communicative nature of the team’s work and makes it possible
for such close collaboration and communication to be successful.

5.5 Discussion

In order to make technical progress, code must be implemented, and in order to
make that code useful, requirements must be understood through interaction with
customers. In XP, pairing supports the creation of code, and customer collabora-
tion supports understanding requirements. These two activities are clearly technical
practices, but our accounts also show the key facilitating role played by social
activity.

7 All actions that involve a card are carried out with a care that transcends its deceptive simplicity
and informality. Indeed, one team studied had an internal wiki entry entitled “The care and feeding
of story cards.”

8 Collective ownership is part of the technical practice of XP: “Anybody who sees an opportunity
toraddwaluestoranysportionof thercodesisrequired to do so at any time.” [3: 59].
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A striking difference between pairing and customer collaboration is that pairing
involves repeatable patterns of collaborative and communicative activity that tran-
scends teams and their contexts, while interaction with the customer is very rich
and highly situated. In order for regular communication to take place between cus-
tomers and developers, the activity of pairing needs to be interrupted, and different
teams handle such interruptions differently. Teams also vary in terms of whether
and how often the customer attends the daily stand-up. As others have noted, the
role of customer is rarely (in our six teams — never) taken by the ideal individual
and the individual circumstances of that person affects the nature of collabora-
tion and communication. For example, how much authority the customer has in
making decisions; how much knowledge of the domain the customer has; where
the customer is located relative to the developers; and so on. All of these impact
the nature of the collaborative and communication activities required to support
technical development.

Much of the co-ordination activity supported by the Wall and the cards cap-
tures progress information rather than functional information. The Wall, supported
by annotations on the story cards, is good at showing an overview of the team’s
progress, but it is not good at showing an overview of the structure of the code, or
the functionality being offered. Instead, the functional attributes and structure of the
software is communicated, evolved and kept safe through social activities such as
pairing and customer collaboration as described above.

One consequence of this is that project management tools, commonly in use
within the software industry, need to link into the Wall and its mechanisms for cap-
turing progress. A tempting solution may be to digitise story cards and the Wall to
enable this linkage, but software tools based around the Wall and the cards must
support the facilitation, management and visibility of working activity offered by
their physical counterparts rather than just produce electronic versions of these arte-
facts, however sophisticated (see [8] for a compelling example of such an approach
to the computerisation of a workflow system in the print industry). Developments
such as that of Iterex [17] are promising. The Iterex system supports the creation of
story cards in accordance with Jeffries’ three “C”s’, the breaking down of a story
into tasks, the colour coding of stories/tasks and their arrangement and their printing
for use ““as technology in their own right.” Importantly, the system links support for
story cards into the other activities of tracking iteration and release progress, visu-
alising project velocity, scope and burn down/up and planning future releases based
on past performance.

Another consequence of the Wall’s focus on progress and not functionality is
that the social activity underpinning the discussion, evolution and agreement of
functional development and progress is crucial to effective code development.

5.6 Conclusion

The social activity we have described and analysed — the collaboration and com-
municationpofypairingrandscustomerycollaboration, and the co-ordination of the
Wall and its associated story cards — brings purpose and meaning to the technical
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practice of XP: to pair programming, test-driven development, refactoring, simple
design, continuous integration, and the on-site customer. Similarly, the technical
practice makes the activities of collaboration, communication and co-ordination
accountable: it is not just any (“warm and fuzzy’’) collaborative, communicative and
co-ordinating activity that is acceptable but the detailed work, intimately connected
to the technical that our analysis has revealed. The creation of working software is
a socio-technical enterprise.
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Chapter 6
Applications of Ontologies in Collaborative
Software Development

Hans-Jorg Happel, Walid Maalej, and Stefan Seedorf

Abstract Making distributed teams more efficient is one main goal of
Collaborative Software Development (CSD) research. To this end, ontologies, which
are models that capture a shared understanding of a specific domain, provide key
benefits. Ontologies have formal, machine-interpretable semantics that allow to
define semantic mappings for heterogeneous data and to infer implicit knowledge
at run-time. Extending development infrastructures and software architectures with
ontologies (of problem and solution domains) will address coordination and knowl-
edge sharing challenges in activities such as documentation, requirements specifi-
cation, component reuse, error handling, and test case management. The purpose
of this article is to provide systematic account of how ontologies can be applied in
CSD, and to describe benefits of both existing applications such as “semantic wikis”
as well as visionary scenarios such as a “Software Engineering Semantic Web”.

6.1 Introduction

In software engineering ontologies are playing a minor role until now, although
they show similarities to conceptual models, which are broadly used in the software
engineering community. An ontology captures a shared understanding of a prob-
lem domain and is usually specified in a logical language by describing concepts,
relationships and additional logical axioms. Knowledge included in an ontology is
designed for both humans and machines. It can be integrated in development infras-
tructures and in developed software to support various software project activities.
One would therefore expect that ontologies are common in software engineering.
But for long, ontology engineering and software engineering have been present-
ing two parallel communities of interest with relatively little overlap. With the
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emergence of the semantic web [11], leading standardization organizations such
as the World Wide Web Consortium (W3C)! and the Object Management Group
(OMG)? took initiatives to better integrate both areas, by e.g., defining ontology
development platforms and investigating best practices for ontology-driven software
architectures. Novel applications of ontologies have been proposed, e.g., in Model-
Driven Development [24] or in Service-oriented Computing [48]. While some
approaches have also applied ontologies in Collaborative Software Development
(CSD), a general framework, which systematically describes how ontologies can
contribute to CSD does not yet exist.

CSD deals with coordinated software project activities that are characterized
by a form of distance (e.g., location, organization, time or culture) between the
stakeholders. Distributed development and collaboration in projects has increased
in recent years, which have lead to various problems. For example, several studies
have proven that distributed teams are less efficient due to lower communication
bandwidth, a lack of informal contact, shared context and awareness [33]. Hence,
making distributed teams more efficient is one of the main goals of CSD research.
To this end, ontologies — both as conceptual and technical artifacts — provide several
advantages that make them a primary candidate for addressing key CSD problems.

In the following, we give an introduction to ontologies from a Software
Engineering perspective (Section 6.2). We then identify key problem areas in CSD
where the application of ontologies promises advantages over traditional approaches
(Section 6.3). After that we present existing ontologies and their applications
(Section 6.4). In particular, we discuss how CSD can benefit from deploying so-
called “semantic wikis”, ontology-based development infrastructures as well as
the more visionary scenario of a “Software Engineering Semantic Web”. While
ontology-based approaches show a huge potential for improving some long-standing
problems in CSD, their large-scale applicability is partially still an open ques-
tion. We will discuss effort and process steps to support CSD scenarios in practice
(Section 6.5).

6.2 Foundations

The term ontology stems from the Greek nominative ov (on), which means being,
and Ao'yoc (logos), which means study or science. In philosophy, ontology con-
cerns the study of being or existence. It seeks to define and describe phenomena,
properties and relations in every part of reality. Ontology is considered to be the
basic subject matter of metaphysics.

In the last decades, the term ontology has been transferred into the world of
computer- and information science and is gaining popularity ever since [47]. One of

1 W3 Consortium, see http://www.w3.0rg/2001/sw/BestPractices/SE/ODA/
2 Object Management Group, see http://www.omg.org/ontology/
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the most common definitions describes an ontology as a formal, explicit specifica-
tion of shared conceptualization [27]. Ontologies can be understood as models that
describe sets of objects, their relationships and constraints in a domain of interest.
This domain is either a part of reality or an entirely fictitious environment. The uni-
verse of objects and relationships is expressed in a declarative, formal vocabulary
that collectively constitutes the knowledge about the domain [25].

Models and abstractions are not new to software engineering. Bruegge and Dutoit
primarily understand software engineering as a modeling activity, where “engineers
deal with complexity through modeling, by focusing at any one time on only the
relevant details and ignoring anything else” [14]. Modeling has turned out to be an
essential activity in several stages of a software project. For example, requirement
engineers extract problem domain concepts based on interviews with customers and
problem statements. Experienced developers model well proven technical solutions
for particular problems as design patterns. Programmers draft complex algorithms
and data structures in pseudo-code or UML models. Models are used for communi-
cation (an engineer draws a UML diagram to explain a component), documentation
(technical documentation does not include source code but models) and develop-
ment (Code generation based on models). In the following section we describe the
main differences between ontologies, models and meta-models.

6.2.1 Ontologies vs. Models

The main difference between ontologies and models, such as entity-relationship
(ER) models or UML models, is Scope. Whereas models are usually intended for
one particular project, ontologies are targeting a much larger audience, which may
bridge across several projects and organizations. In that sense, ontologies represent
universally valid or widely accepted truth, i.e. knowledge, about a restricted domain.
It encompasses future projects and developments including potential, possibly still
unknown users. An ontology provides a domain theory and not the description of
plain data structures. For example identifiers in a database are used specifically for a
concrete system, while ontology resources are globally identified in the domain. The
second main difference that follows from the scope is the Open World Assumption.
In opposite to the Closed World Assumption used in common models, the absence
of a particular statement within the ontology means, that the statement has not been
made explicitly yet, irrespectively of whether it would be true or not, and irrespec-
tively of whether we believe (or would believe) that it is (or would be) true or not.
Other differences between ontologies and models are:

e Expressiveness: Languages for representing ontologies, e.g., OWL, are syntac-
tically and semantically richer than common modeling languages, e.g., UML.
[43].

e Target: An ontology describes the domain in a semi-structured way. An ontology
includes “tagged” text.in.natural language and can be processed by machines and
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read by humans. Common modeling languages either target humans, e.g., UML
notations, or machines, e.g., SQL and domain specific languages.

e Reasoning: If an ontology is specified in a logical language (e.g., OWL is based
on Description Logics), a reasoner can be used to derive implicitly defined knowl-
edge. It is then possible to automatically derive a hierarchy of concepts and
determine inconsistencies. This poses a significant advantage compared to stan-
dard modeling languages lacking expressiveness and formal semantics required
for automated reasoning.

e Integration and Interoperability: Ontologies are well suited to define semantic
mappings for heterogeneous data.

Meta-models are considered to be more related to ontologies [46]. However, their
characteristics and goals are different [43]. Meta-models aim to improve the rigor of
syntactically similar but semantically different models, while ontologies do the same
for semantically similar models. In addition, without an ontology, different knowl-
edge representations of the same domain can be incompatible even when using the
same implementation meta-model . Finally, while an ontology is descriptive and pri-
marily concerns a particular problem domain, a meta-model is generally considered
to be more prescriptive and primarily concerns a solution domain.

Software engineering has always been a complex endeavour — in terms of mas-
tering the problem domain as well as the software process itself. Not only modeling
is considered as an important activity but also providing meta-information which
describes the semantics of terms, data and functions. To this end, conceptual mod-
els, meta-models, and ontologies promote knowledge sharing and reuse in a human-
as well as a machine-understandable manner. However, ontologies offer distinct
advantages over conceptual models and meta-models [43, 23, 50]. Ontologies:

Enable a new and effective way to reuse knowledge.

Support a better understanding of a knowledge area.

Separate problem domain knowledge from solution domain knowledge.
Support an analysis of the structure of knowledge.

Can be easily extended.

Help in reaching a consensus on the understanding of a knowledge area.
Share common information structure among people and systems.
Enable a machine to use the knowledge in an application.

With respect to software engineering several advantages of ontologies can be
identified. First, ontologies can be used to represent a commonly agreed vocabulary
of concepts from the software engineering domain. For example, a top-level ontol-
ogy for software engineering could be based on SWEBOK [7]. Keeping in mind
that terms and expressions used to describe the software engineering domain are
often confusing and ambiguous for both humans and machines [50], the terminol-
ogy provided by an ontology adds clarity and facilitates a shared understanding.
Unlike conceptual modeling languages,. ontology languages allow for defining
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precise logical statements that describe what these concepts are, how they are
related, and can be related to each other.

Ontologies do not only contribute to resolving conceptual ambiguities and cre-
ating a shared understanding among several participants. If knowledge is codified
in an ontology language it becomes machine-interpretable. Thus, a reasoner can
be used to infer new knowledge on both terminology and instances. In the soft-
ware process, for example, ontologies enable the exchange of information between
different software tools. Moreover, they could be an integral part of a software
development environment, e.g., to support knowledge management. Alternatively,
ontologies can also be employed in a software solution as the central part of the
application logic. A thorough classification of the various applications of ontologies
in software engineering can be found in [31].

6.2.2 Ontology Representation Languages

Popular ontology representation languages are RDF,> RDF Schema and OWL.*
OWL (Web Ontology Language) is a recommendation by the World Wide Web
Consortium. This specification includes the definition of three variants with different
expressivity levels:

e OWL Lite intends to support classification hierarchies and simple constraints.

e OWL DL includes all OWL language constructs under some restrictions to
preserve decidability.

e OWL Full is based on a different semantics from OWL Lite or OWL DL. There
are no reasoners that support complete OWL Full reasoning.

OWL DL is often preferred [49], since it provides maximum expressivity,
while retaining computational completeness, decidability and the ability of practical
reasoning algorithms. All ontology languages share the following main components:

Classes represent concepts, similar to types in object oriented modeling.
Properties represent types of associations between concepts.

Axioms represent formal sentences that are always true [27].

Instances represent elementary elements or phenomena.

In RDF ontologies are represented as a set of statements in the form of subject-
predicate-object expressions. The subject denotes the resource, while the predicate
denotes traits or aspects of the resource and expresses a relationship between
the subject and the object. For example the notion “John has the role of project

3 Resource Description Framework, cf. http://www.w3.org/RDF/
4 Web Ontology Language, cf. http://www.w3.0rg/2004/OWL/
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has the role of
( John ) ={ Project Manager }

Fig. 6.1 Subject-predicate-object expression

manager” is represented as a triple with the subject “John”, the predicate “has the
role of” and the object “Project Manager” (Fig. 6.1).

Ontology engineering is supported by a wide range of different tools, covering
aspects such as ontology editing, mapping, learning or reasoning [26]. Many of
these tools — such as the well-known ontology editor Protégé’® — are geared towards
the creation and maintenance of so-called heavyweight ontologies, which are used
to model complex domains such as medicine or biology. On the other hand, many
web-based applications are based on so-called lightweight ontologies which can be
created or maintained by end-users in a collaborative fashion.

6.2.3 Semantic Web

With the emergence of the Semantic Web vision in 2001 [11] ontologies have
been attracting much more visibility both in academia and industry. According
to W3C the Semantic Web is about two things: It is about common formats for
integration and combination of data drawn from diverse sources, while the orig-
inal Web mainly concentrated on the interchange of documents. It is also about
a language for recording how the data relates to real world objects. That allows
a person, or a machine, to start off in one database, and then move through a
continuous set of databases which are connected not by wires but by being about
the same thing. The Semantic Web effort provides standards and technologies for
the definition and exchange of metadata and ontologies. Available standard pro-
posals provide ways to define the syntax (RDF) and semantics of metadata based
on ontologies (OWL). There is an ongoing research covering privacy and security
issues.

6.3 Uses of Ontologies in CSD

The software engineering community has dealt with various aspects of collabora-
tion. In the earlier days, when programs became more complex, issues of manpower
and project coordination have been raised and discussed in order to meet quality,
resource and time contracts in large projects. Later researchers studied formal and
informal communication mechanisms in software projects to understand how devel-
opment teams work [35]. Recent years have further stressed these issues, driven by
an increasing distribution of software development endeavors.

3 Piotégé: http://protege.stanford-edu/
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According to Merriam-Webster, collaboration means to work jointly together
with others. In software projects collaboration may have different dimensions:

Collaboration takes place among various roles, e.g., users, developers or testers.
Collaboration nature ranges from tightly interwoven to loosely coupled.
Collaboration time may be asynchronous (as in teams spanning time-zones) or
highly synchronous (as in pair programming).

Collaboration purpose might be required, optional, anticipated or unforeseen.

There are two main functions of collaborative work: coordination and knowledge
sharing. Both rely on communication as a fundamental building block. Coordination
describes the most crucial and fundamental functions of collaborative work. The
need for coordination typically stems from dependencies among tasks, which
require different persons to coordinate towards a common goal or a product [42].
A typical coordination problem in software development is the limited awareness
of other’s work [44]. Knowledge sharing denotes the dual problem of searching for
(looking for and identifying) and transferring (moving and incorporating) knowl-
edge across organization subunits [28]. Knowledge sharing needs are usually not
explicit, but defined by the gap between the background of individual develop-
ers. Personalization and codification are the core strategies for knowledge sharing
[19]. The personalization strategy primarily relies on personal communication to
share tacit knowledge, which only exists in the “heads” of individuals [19]. In
turn, the codification strategy targets explicit knowledge, which is captured in doc-
uments. In the following we give a systematic overview on uses of ontologies in
CSD. We discuss advantages of ontologies for supporting coordination and knowl-
edge sharing. Then we describe several fo-be scenarios from the daily development
work.

6.3.1 Coordination

Awareness Creation: Finding the right balance between information overload and a
lack of awareness is a challenge in today’s software projects. Ontologies can enable
a more precise and efficient collaboration by including semantic annotations in both
system (e.g., test-case) as well as collaboration (e.g., email) artifacts. Interest groups
can be dynamically built by linking semantically annotated content to ontology-
based stake-holder profiles. Information is then shared precisely to stakeholders (in a
pull or push mode) depending on their interests. This will increase the effectivity and
efficiency of awareness creation measures and decrease the overwhelming amount
of communication and information overload, e.g., by sending every information to
a large static mailing-list [40].

Tool-Integration: Different project stakeholders use different tools, they are
familiar with. These tools use proprietary standards and models for managing infor-
mation.. The same_information.object.can be, e.g., called “issue”, “bug”, “bug
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report”, or “change request” in different tools. Ontologies facilitate the integration
of heterogeneous information and tools, in a syntactic (unified referencing, unified
property mapping) and semantic (Synonyms, composites, specialization) manner.

Agility Support: A major challenge of today’s software projects is to increase
teams’ flexibility to deal with frequent changes in requirements and design, while
coping with coordination issues resulting from increased size and distribution of
projects. Due to their extensibility and support of the open world assumption,
ontologies supports project stakeholders to deal with change, if they are used to
manage project information. Ontologies also support advanced querying mecha-
nism, which enables the generation of check lists — a popular tool in agile teams.
In a project with frequent changes and releases, development-, test- and integration-
checklists, release notes as well as management reports (all inherently dependent of
different participants) can be automatically extracted if the corresponding informa-
tion is semantically rich. Participants can publish and register for information they
require, like RSS feeds. A query like “list manual tests that need to be conducted
for the next release” can be supplied by selecting fixed issues, affected components
and requirements and then retrieving related tests [40].

6.3.2 Knowledge Sharing

Research indicates that the absence of awareness about the existence of certain
knowledge (information access) and the low level of experience sharing (informa-
tion provision) are major blockers for knowledge sharing, especially in distributed
settings [20]. Given the existence of large amounts of reusable artifacts like speci-
fications, source code or binaries — in both corporate repositories and the Internet —
there is a large potential to improve the software development efficiency.
Information Access: The creation of large-scale information reposi-tories, such
as the Internet or corporate intranets has brought a large amount of information
for developers. However, due to constraints in time and mental capacity, it is hard
for humans to find information suitable for solving a given task. Thus, information
systems, which provide an intelligent information retrieval are desirable in CSD
[17]. Ontologies can facilitate information access for software developers due to
inclusion of semantics, reasoning ability as well as support for powerful querying
constraints, as Witte et al. illustrate for the case of software maintenance [51].
Information Provision: Even if large repositories are a good starting point for
supplying developers’ information need, information provision plays a major role in
increasing the effectivity and efficiency in CSD. Developers often avoid documen-
tation effort or do not address differences in background knowledge — especially
when providing information to distant team members. Examples are the rationale
behind certain decisions or experience sharing, such as the steps followed to fix
a particular bug. Ontologies can help to explicitly capture contextual information
(such as the system configuration when a bug occurred) and give developers a
more precise,unambiguous.vocabulary.to.express certain information. Furthermore,



6 Applications of Ontologies 117

certain contextual clues can be automatically derived from software artifacts by
using information extraction methods [13].

6.3.3 Development

The use of ontologies brings several benefits to the various activities and roles
involved in a software project.

Requirements Specification: Since software engineers are often no domain
experts, they need to learn about the problem domain from the customers. A
different understanding of the domain may lead to an incorrect and incom-
plete implementation. Gaining a shared understanding of the problem domain
is particularly challenging in multi-site development, where informal commu-
nication between the participants is much harder to achieve [45]. To this end,
ontologies can be used for the formal and unambiguous specification of require-
ments [37, 52]. Particularly concepts, relations and business rules of the domain
model can be expressed in ontologies with varying degrees of formalization and
precision.

Artifact Tracing: Project stakeholders consume and produce different artifact
types, using different vocabularies and languages. However, the information in these
artifacts is highly interlinked. On the one hand, technical concepts are referenced
in user manuals and managerial reports. On the other hand, domain concepts are
traced in design documents and source code documentation. Collaborating on cre-
ating and maintaining project documentation is a non-trivial task due to the various
backgrounds of participants. A key problem is that traceability between artifacts
is usually not sufficiently maintained. This becomes even more complex when
project participants are distributed, and the content creation context is not shared.
Ontologies can serve as a shared foundation for referencing, reusing and localizing
information in projects with a high degree of collaboration. They are well suited for
describing the semantic relationships between heterogeneous information resources,
including text documentation, email, notes, models and code. Ontologies can fur-
thermore be used for representing automatically recovered traceability information
during maintenance [55].

Component Reuse: Component documentation, if it exists, is insufficient to
describe all ways to reuse a component. Correct component integration, effective
work with powerful frameworks or successful usage of design patterns requires sig-
nificant background knowledge and experience about concerned components. Such
knowledge is scattered across different sources such as emails, forums, specifica-
tions or bug reports, especially in open source development. Ontologies can be
applied to addressing the component retrieval as well as the integration issues. First,
they enable to join information which normally resides isolated in separate informa-
tion sources. For example, format mappings can be defined to automatically create a
knowledge base from component descriptions, which minimizes the extra modeling
effort [29]..Second,.ontologies.may.provide additional background knowledge (e.g.,
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about the properties of a certain software license) that enables non-experts to query
from their point of view (ask for a license that allows to modify source code).

Error Handling: Error handling is a highly collaborative endeavor. It is difficult
to define the exact scope and detail of an issue when it is reported for the first time. In
the case of semantically rich errors such as unexpected system behaviors or runtime
errors, the state of the practice is to ‘google’ for error message excerpts or keywords
describing the context, in order to find relevant hints how to handle that error. It is,
e.g., useful to find out where other developers looked for help while having simi-
lar problems. Thereby a main issue arises from the different contexts between the
developer who seeks for help, and the developer who provides knowledge about the
error situation. Typically these situations are never identical, resulting in a “context
gap”. Ontologies can mediate between the different contexts of developers handling
errors, since typically these situations are never completely identical.

Test Specification: Software tests represent an essential quality assurance mea-
sure. However, writing test cases is expensive and does no directly yield business
value. The derivation of a “suitable” test case demands both problem and solution
domain knowledge, which can be included in ontologies in a machine processable
format. Basic test cases can therefore be generated. A simple example for this would
be regarding cardinality constraints. Since those constraints define restrictions on
the association of certain classes, they can be used to derive equivalence classes
for testing. Formalisms like OCL that are specialized for such tasks already exist.
However, ontologies decrease the ambiguity of different used vocabularies and can
link to other project and domain-related information. Thus, testers — who are usu-
ally not as involved in the problem domain as the developers — can more easily
understand initial business requirements and derive suitable test cases.

6.4 Ontology-Based Tools in CSD

We introduce existing ontologies and discuss three ontology-based infrastructures
for collaboration tasks: “semantic” wikis, semantic development environments and
the more visionary scenario of a “Software Engineering Semantic Web”.

6.4.1 Ontologies

Ontologies have recently been applied for various Software Engineering tasks [31].
In this section, we describe selected ontologies which target collaborative software
development and tightly related issues.

6.4.1.1 Collaboration Ontologies

We briefly introduce a number of standard ontologies, which describe human
agents.and theirinteractions.. These.describe general collaboration entities and form
“building blocks” for reuse by other ontologies.
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FOAF: The “mother” of all Semantic Web ontologies is the “Friend-of-a-friend”
vocabulary (“FOAF”) [1, 21, 2]. FOAF was created as one of the first application
examples of the Semantic Web and has been heavily reused by other ontologies. In
essence, the FOAF vocabulary allows to resemble social networks in a decentralized
manner. Therefore, every user creates his or her own FOAF profile, which speci-
fies basic personal information (such as address or employer) and allows to draw
“knows” relations to other persons. Once joined, all these little pieces of seman-
tic data allow to form a network of relationships among the individual persons.
As simple as the initial idea, the FOAF specification [2] is small, defining only
basic concepts such as Person, Group or Organization as well as various properties
of these entities such as name, knows, workplaceHomepage. The following listing
shows a snippet of FOAF data.

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns: foaf="http://xmlns.com/foaf/0.1/">
<foaf:PersonalProfileDocument rdf:about="">
<foaf:maker rdf:resource="#me"/>
<foaf:primaryTopic rdf:resource="#me"/>
<admin:generatorAgent rdf:resource="http://www.ldodds.com/foaf/foaf-a-matic"/>
</foaf:PersonalProfileDocument>
<foaf:Person rdf:ID="me">
<foaf:name>Hans-Joerg Happel</foaf :name>
<foaf:depiction rdf:resource="http://www.hjhappel.de/images/site/hj.jpg"/>
<foaf:phone rdf:resource="tel:+49-(0)-721-9654-814"/>
<foaf:workplaceHomepage
rdf:resource="http://www.fzi.de/ipe/eng/mitarbeiter.php?id=418"/>
<foaf:knows>
<foaf:Person>
<foaf:name>Walid Maalej</foaf :name>
<foaf :mbox
rdf:resource="mailto:maalejw@in.tum.de"/></foaf:Person></foaf:knows>
<foaf:knows>
<foaf:Person>
<foaf:name>Stefan Seedorf</foaf:name>
<foaf:mbox rdf:resource="mailto:seedorf@uni-mannheim.de"/>
</foaf:Person></foaf:knows>
</foaf:Person>
</rdf :RDF>

SIOC: While FOAF has its merits as a pioneering work and a ground vocabulary
for persons and organizations, it lacks more sophisticated concepts such as roles
and concepts for further interactions and specific domains. One particular extension
of this kind is the vocabulary for “Semantically-Interlinked Online Communities”
(SIOCQ) [3, 6, 5]. SIOC extends FOAF and adds concepts and properties to describe
interactions and content in online communities such as message boards, wikis and
weblogs. Figure. 6.2 depicts example concepts such as Forum, Item, Role, Space
and Thread. The vocabulary allows site owners and tool providers to semantically
annotate their content and thus exchange and join data across different sites.

6.4.1.2 Software Development Ontologies
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Fig. 6.2 General overview of SIOC [5]

view could avoid redundant work and speed up problem solving. A bug resolution
process for example usually involves the discovery and reporting of a bug (often
into a bug tracking system), subsequent discussion inside a developer group, and
finally changes in the code that resolve the bug. While the discussion on the mailing
list and the code changes are clearly triggered by the bug report, their relation is not
explicit and often kept separately. Since it is difficult to manage larger amounts of
bugs without all existing context information, the lack of tool support lead to delays
in bug fixing and duplicate work or discussions.

Dhruv: Dhruv [8, 9] is a semantic-web enabled tool which aims to assist the soft-
ware maintenance/bug resolution process, by recommending relevant information
during bug inspection. Therefore, Dhruv is integrated in a web-based bug track-
ing system and displays recommendations in a special sidebar. Recommendations
may involve source code files, mailinglist discussions or similar bug reports (c.f.
Fig. 6.3). Dhruv does not operate on a special user profile. The context for recom-
mendation is always the bug report for which related information is retrieved. This
information is included automatically when creating the report page.

DOAP: The “Description of a Project” ontology (DOAP [22]) extends the FOAF
ontology to describe software projects. Core concept is the software project with
various properties such as category, license and bug tracking URL. Making this
information available in a standardized way provides several benefits. Dameron
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(ccmmunlty: Person ) (ln(erachons: Interactionltem ) (code: SoftwareObject

code: hasAuthor
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(bugs: PatchReport )
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Fig. 6.3 Basic concepts of the Dhruv ontology [8]
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describes how to automatically update the Protégé ontology editor and its plug-
ins [18]. The author uses an extension of the DOAP ontology and a python script
that retrieves the most recent version number and a download URL by calling a web
service that does reasoning. The basic advantage of an RDF-based solution in con-
trast to e.g., describing the download information in XML is exten-sibility. Using an
XML schema, all plug-in providers must provide their data in the specified format.
In order to stay compatible to the update script, changes would have to be done cen-
trally and distributed to all plugin providers. Using an RDF ontology, every provider
is free to add or subclass concepts from the initial version without being at risk to
become incompatible.

6.4.2 Semantic Wikis

Wikis are easy to use, web-based tools for collaborative knowledge acquisition and
sharing. The first wiki, initiated by Ward Cunningham in 1995, served as a dis-
tributed knowledge repository for design patterns. Since then, software engineering
remains an important application domain for wikis [38]. Wikis are used by Open
Source communities and by enterprises such as SAP, Novell, and Yahoo for pur-
poses as diverse as knowledge transfer, technical documentation, quality and process
management, release planning, and error tracing [10, 41, 4].

However, for specific, well-structured content, traditional wikis often reach
their limits with their core functionality. While the content of a wiki page might
provide structure and meaning to a human reader, it does not possess any machine-
interpretable semantics. These limits are best described by an example: In a software
project, one wiki page is mantained for every entity, e.g., a stakeholder, a use case,
or a software component. The hyperlinks between pages then describe relationships
between entities. For example, a component will realize one or more use cases.
However, the meaning of the hyperlink remains implicit and can only be interpreted
by humans, but not by the wiki engine itself. Also, the type an entity (or page) is
not specified in a traditional wiki. Thus the set of all use cases and all components
cannot be automatically derived.

The lack of structure in traditional wikis is tackled by a completely new class —
so-called Semantic Wikis. They allow to impose a knowledge model (i.e., ontology)
onto previously unstructured page content. In a semantic wiki, the embodied knowl-
edge can be structured by annotating pages and hyperlinks with types. In our
example, all pages describing a use case are of the type Use Case which is also
an ontology concept (see Fig. 6.4). Similarly the hyperlinks between the pages will
carry a semantic meaning in many cases. The link between Component X and Use
Case 1 describes the relation realizes. Likewise the links between Stakeholder S and
Use Case 1 and Use Case 2 describe the relation participatesin.

Semantic wikis provide various advantages for software projects. First, they
enable an incremental formalization of underlying knowledge across various soft-
ware engineering activities. Unlike a development or a collaboration infrastructure
with-a-fixed-scheme (e:gs-a-bug-tepository), semantic wikis support both the
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Fig. 6.4 Pages and hyperlinks in a semantic wiki correspond to ontology concepts and properties

evolution of content and schema. Furthermore, by adding semantic meaning to
pages and grounding it in the ontology, the wiki content becomes machine-
interpretable and can be enriched with further background knowledge. For example,
the question Which stakeholders use component X? can be now formulated as a
semantic query and automatically answered by the wiki engine. Thus, semantic link-
ing capabilities enable a better traceability between different software engineering
entities [40].

Prototypes of semantic wikis have been realized in a number of projects, either
by implementing a completely new wiki engine or by extending an existing one.
Although the core idea of all semantic wikis is to provide a machine-processable
knowledge model described in the wiki pages, they vastly differ in terms of
required user experience and knowledge representation languages. For example, the
Semantic MediaWiki project adds some extra syntax for the semantic annotations to
the wiki markup language [36]. It therefore realizes an open approach where a user
can optionally add semantic markup. In other approaches, every page is interpreted
as an entity so that the wiki’s semantics are defined in a more rigorous style [32].

6.4.3 Semantic Development Environments

Integrated development environments (IDEs) have become powerful tool suites to
support developers work. However, several authors have noted, that state-of-the-art
IDEs — while well supporting individual developers’ tasks — neglect the collabora-
tivernaturerof ssoftwarerdevelopments[16]y A number of recent tools and scientific
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prototypes has addressed this issue. The IBM Jazz toolsuite [16] addresses the col-
laboration needs by integrating communication and awareness functionalities into
the development environment. Integrating collaboration brings the payoff of reduced
friction in the development process, a greater sense of context, and immediate
traceability between collaboration artifacts and system artifacts. A similar approach
presented by Bruegge et al. is focussing on the modeling activities of software engi-
neering [15]. The Mylyn Eclipse plugin [34] addresses the problem of information
overload faced by developers in a single development environment. The core idea
is, that not all classes in large software projects are relevant for working on a given
task. Thus, mylyn identifies and hides or blurs classes which are less relevant. Mylyn
assumes that developers are sequentially working on fine-grained tasks (e.g., fixing
a bug), which affect only a subset of source code files. It maintains a simple model,
assigning each source code file a “degree-of-interest” value in a given task context
which is calculated from the previous modifications of a particular code elements.
Mylyn allows developers to share their task context, which helps to reproduce the
working context.

However, these approaches lack a deeper understanding of developer’s actual
activities. Jazz for instance offers several collaboration services, but maintains
no internal model about actual collaboration needs and opportunities. Similarly,
mylyn has no deep understanding of the semantics of developer’s interactions, but
aggregates all interactions into a single “degree-of-interest” value.

Thus, while already useful, these approaches only partially ease the mental bur-
den of developers. As Zeller lined out [54], IDEs bear large potential for automated
support in tasks which machines can do better than human developers. Examples for
such tasks are the creation of developers’ work logs, awareness about other devel-
opers’ activities in distributed development, management of dependent libraries or
navigating information in complex projects [30].

Two major building blocks are required to support such scenarios. First, IDEs
need a more precise understanding of developers’ activities (e.g., developing vs.
debugging), semantics of a code change (e.g., changing an interface vs. changing
its implementation), interdependencies between different software artifacts and the
organizational structure of a development team. Parts of these issues are already
addressed by ontologies mentioned in Section 6.4.

The actual interpretation and data creation has to be carried out by developer
observation frameworks, which record the actions of a developer and infer higher
level activities. While mylyn can be seen as a low-level developer observation com-
ponent that allows to derive a very particular piece of information (artifacts related to
a task), the TeamWeaver project® realizes a more generic and extensible framework
with an implementation for the Eclipse IDE [39].

With these two building blocks, IDEs can become not just “collaboration-aware”,
but even “context-aware”. A concrete example is context-aware recommendation,
which proactively provides developers with pieces of information (e.g., about the

5 http://www.teamweaver.org
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new version of a component or a bug fix) when they need it. In existing software
engineering recommendation systems such as CodeBroker [53] or Hipkat [17] rec-
ommendations have to be triggered by the user and are thus not proactive, since
these approaches are based on a simplified model of developers’ actions.

Ontologies can contribute to the realization of intelligent, context-aware devel-
opment environments by providing a backbone model for describing meaningful
entities and activities from the development domain. Filled by observation tools, this
semantic information can be applied to support developers in tasks, which machines
can do better than human developers.

6.4.4 Software Engineering Semantic Web

The idea of a “Software Engineering Semantic Web” takes several concepts from
semantic development environments further into a web-scale environment. One core
premise of CSD is the fact, that major systems can not be built “from scratch” by a
single organizational entity. Systems of reasonable size and complexity build upon
powerful platforms, reuse existing libraries and have to interact with the “outside
world”. Accordingly, developing and maintaining these systems implies coordina-
tion activities with various actors. Coordination tasks can span the awareness of
other developers’ activities, the observation of new releases and problems in used
libraries or the negotiation of system requirements. While such activities can not
be totally avoided in a complex development ecosystem, we argue that the coor-
dination activities as such can be supported in a much better and deeper way. For
example, a developer monitoring the release status of an external library needs to
find out the exact name and version of the library used, locate information about the
release status (e.g., on a project webpage) and then monitor the status of this library
(e.g., by reading a mailing list). Thus, developers are forced to carry out a lot of
tedious “micro-level” activities which serve towards fulfilling an actual development
goal.

The vision of the “plain” Semantic Web (Section 6.2.3) is driven by a very sim-
ilar observation. As in our developer’s example, people have to deal with lots of
information in their daily life. Scheduling a doctors appointment involves draw-
ing information from various sources, selecting a suitable doctor (e.g., based on
geographical and/or administrative preferences) and finally negotiating a suitable
date from both parties’ calendar [11]. Again, people are burdened with a num-
ber of little nasty tasks to carry out a rather simple activity. The Semantic Web
assumes that in many of such situations, electronic information already exists, which
could be the basis for computer-based support. However, this information is typ-
ically created and stored by different actors in a decentralized way — and thus
heterogeneous and often not machine-readable. The Semantic Web provides means
(including standards and according tools) to allows these actors to formally annotate
their data, such that agents can interpret it to carry out certain tasks. An important
aspect.is,.that the formal ontology-languages for the Semantic Web do not enforce
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homogeneity, but instead provide means for data mapping and integration. A
Software Engineering Semantic Web is a Web, in which agents fulfill useful
development tasks based on semantically enriched data. We argue that software
engineering is an adequate domain for this vision, since knowledge in software
projects is typically scattered across various people, systems, formats and spaces.
Especially in large projects, development information is distributed and heteroge-
neous. This is, a.0. due to reusing libraries and frameworks, which are provided by
other organizations.

The Software Engineering Semantic Web has not yet been realized. In the fol-
lowing we sketch a possible realization based on various roles and actors involved
and reference initial building blocks.

We start with components providers, whose libraries and frameworks are used for
building larger applications. These actors typically offer additional services to the
actual software, such as notifications about updates, security issues or code exam-
ples. This project data is often available in a structured or semi-structured format.
Projects hosted at large Open Source development portals such as SourceForge offer
various kinds of information, e.g., about software releases or bugs. Commercial
vendors also have same information in their “hidden web” of intranets and com-
pany networks. This structured data can be easily exposed in a semantic way
[12], and already several platforms have adopted this practice.” Open Source
projects would profit from this practice since the availability of “clean” project
information is an important criterion for trust in a project and its success. For com-
mercial providers, offering structured, machine-interpretable data streams could be
an additional service which generates additional revenue.

Second, information provision and collaboration aspects have long been
neglected [16] from tool developers. One reason is the heterogenity of such data,
which makes it hard to integrate it into tool workflows. However, extending tools to
consume and produce semantic data (c.f. Section 6.4.3) can give them a competetive
advantage. First, the easy integration of relevant external information helps to make
developers more productive and causes less interruptions. Second, semantic inter-
operability improves the tool-spanning workflow of developing artifacts and thus
eases the integration of the overall development landscape.

Finally, application developers will benefit from improvements in their develop-
ment environment. Time-consuming tasks will be simplified and novel, advanced
development scenarios will possible to support (c.f. Section 6.3). Semantically-
empowered IDE’s can blend relevant external information into the current context
of a developer. This includes data from the project’s own development sever, sta-
tus notifications of remote co-workers or new versions of depending libraries.
Developers can thus get a much more precise and complete overview of infor-
mation related to their current task. Developers can also benefit from additional
features such as an easy sharing and access to others’ development experiences or
consistency checks — e.g., concerning license compatibility, bugs or security issues.

7 see-e.g-hitp://doapspace.oig/
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While some of these applications are promising, the realization of a Software
Engineering Semantic Web depends on three major factors: the existence of seman-
tic metadata, the existence of suitable ontologies and finally the existence of
powerful tools for leveraging this data to provide new services. Formal metadata is
already widely available due to the large amount of structured and semi-structured
data in software development. Publishing this data in a semantically meaningful
way thus primarily requires suitable ontologies and mappings between the different
sources.

Creating these ontologies does not have to be difficult. In many cases it is
sufficient to transform existing metadata schemas in a suitable ontology representa-
tion. Further steps as integrating and mapping heterogeneous schemas can then be
adressed by various means. Tool-vendors or interested parties can build and offer
baseline ontologies. First examples are already available as described in Section 6.4
or under development such as the Baetle project® covering issue tracking data.

It seems as if tools are still the major bottleneck for a Software Engineering
Semantic Web. So far, only research prototypes embrace semantic metadata in a
large way, while state-of-the-art development tools are not yet adopting it. However,
the increasing maturity of the Semantic Web tool landscape and the huge potential
of easily available metadata in the software engineering domain make us confident
that tool vendors will integrate according features in their programs.

The Software Engineering Semantic Web enables scenarios described in
Section 6.3, which cannot be realized simply by a semantic wiki or a semantic devel-
opment environment. A Software Engineering Semantic Web is nothing more than
an interconnection of distributed semantic development infrastructures and tools.
These tools are clients for consuming semantic data and realizing appropriate assis-
tance functionality, but they also support developers in sharing information into
a Software Engineering Semantic Web. While it may take time to let this vision
appear in a large scale, we believe that an increasing number of actors in software
development ecosystems will embrace semantic metadata.

6.5 Conclusion

In this chapter, we provided an introduction into knowledge representation with
ontologies and existing as well as visionary applications in CSD. Since CSD is
much about managing implicit and explicit dependencies among developers and
development artifacts, the semantic expressivity of ontologies adds key benefits to
existing work practices.

Although ontologies have been around for many years, several factors promote
their increasing adoption. First, with a number of W3C standards such as RDF
and OWL issued in recent times, tools and methodologies for creating and man-
aging ontologies have matured. Second, the success of the Web enables developers

8 http://code.google.com/projects/baetle
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to collaborate in a richer and more dynamic way, instead of working in de facto
isolation.

Both factors contribute to a slow but growing number of semantic approaches
addressing CSD issues. However, we have to keep in mind that the creation and
maintenance of ontologies is a challenge of its own, which needs to be justified
by efficiency gains. Proving such efficiency gains is sort of “a chicken/egg prob-
lem”, since the success of several visionary scenarios depends on their adoption.
What is clear, is that there will not be a single “CSD-ontology” satisfying all needs.
Applications of ontologies in software development can be manifold and so the
resulting ontologies will differ in expressivity, scope and purpose.
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Part 11
Tools and Techniques

André van der Hoek

Tools have served a critical role in collaborative software engineering throughout.
They are used to automate tasks that otherwise humans would have to do by hand,;
tasks that tend to be repetitious, labor-intensive, tedious, or difficult to perform.
Their use has made it possible to scale the size of software development teams and
the projects in which they engage. The kinds of extremely large projects undertaken
today just would not be possible without, for instance, the concurrency management
facilities provided by SCM systems. Collaborative software engineering tools have
also afforded new ways of working. The open source movement in its current scale is
only possible due to the internet, CVS, mailing lists, and online project management
sites such as Source Forge.

In the early days of software engineering, tools focused strongly on the man-
agement of the artifacts that were produced. Version control systems are the chief
example, automating tracking of changes to (code) artifacts in order to maintain a
historical record as well as to enable concurrent access to the same code base by
multiple developers at the same time [6]. Shared editors emerged relatively early as
well, built on the paradigm of instant sharing of edits instead of following the lock-
edit-merge cycle promoted by version control systems (e.g., MMM [3]). A wealth of
policies has emerged since that attempt to codify and support various intermediate
levels of concurrent access and sharing among groups of developers [4]. Primarily,
these policies target changes to code or textual artifacts; artifacts that are stored in
binary represent a challenge since they require turn-key diff and merge algorithms
to be inserted into the generic collaborative work infrastructure.

Another class of tools has focused on supporting the overall process of collabo-
rative software engineering. Early incarnations of these tools aimed to address two
issues: (1) planning, by assisting project managers in creating GANTT charts and
other such schedules of work, and (2) workflow, by controlling the flow of doc-
uments across tasks and people throughout an organization. A host of specialized
workflow and process management tools emerged, including high-end environments
that supported reflective processes and even multiple versions of the same process
to be active at the same time [1]. More recently, we have witnesses a reversal from
specialized process environments upon which the remainder of the development
tools rest to environments in which pre-determined, or at least highly constrained,
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processes are built in. IBM’s Jazz, for instance, is an extension to Eclipse that
provides an editor-centric environment that revolves around a limited, more agile
process [7]. This trend has also allowed tools to start presenting task-centric advice
to developers; for instance, Mylyn reduces the set of visible entities in the devel-
opment environment to those that pertain to the current task and/or change at
hand [8].

Another category of tools focuses on communication among collaborating par-
ties. A number of these communication tools are general, as developers rapidly
adopted e-mail, newsgroups, and instant messaging for their purposes. More spe-
cific communication tools were also developed. One of the most important such
tools have been bug trackers (also called issue trackers). These tools provide a cen-
tral location where all bugs and feature requests are collected and from where they
can be assigned to individuals to address them in the code base. Recently, a host
of awareness tools have emerged, aiming to inform developers of important issues
needing their attention. Palantir [11] CollabVS [5] and FastDash [2] are examples
of such tools, all aiming to keep developers abreast of the efforts of their colleagues
and especially of those efforts that may lead to potential merge issues later on. At
the same time, some communication tools focus on the question of who to talk to
pertaining to certain issues. In particular, expertise finding tools assist developers in
identifying those developers who have expertise over a certain portion of the code
base [9, 10].

Today’s tools face several key challenges. First and foremost is the fact that soft-
ware increasingly is being developed in a distributed and even decentralized fashion,
with multiple organizations responsible for different parts of the software system or
different tasks with respect to the development process. Collaboration support, thus,
must extend across separately-developed components, geographical boundaries, and
independent teams. This brings with it entirely new concerns in terms of privacy and
intellectual property issues, as well as the need to respect different work practices
that are being bridged. Second is the issue of cross-life-cycle support. Most collab-
oration tools still focus on a single phase of the life cycle, often just programming,
ignoring other phases. Much still is to be gained with advanced tool support in this
regard. Third is the issue of control, particularly when it comes to process tools. For
many years, the tools placed the organization in control, enforcing its processes and
practices on the individuals. Recent tools, recognizing that individuals are resource-
ful and effective in dealing with unforeseen problems, place some of that control
back in the hands of the individuals. Permeating all three issues is a key emerg-
ing consideration underlying most of today’s work in the collaborative software
engineering tools arena: tool solutions must be developed keeping in mind that the
ultimate solution is one of “tool plus person”, that is, tools in and of themselves do
not lead to changed practices, it is in how individuals work with and leverage tools
that new practices arise. It is this social-technical interplay that ultimately decides
upon a tool’s success in improving collaboration practices.

The next five chapters provide a sampling of today’s research into collabora-
tive software engineering tools, ranging from theoretical expositions, to new tools,
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to concerns regarding how to evaluate collaborative software engineering tools, to
overviews of the present state of the art. Together, the papers provide a mere glimpse
of the depth and breadth of research activities taking place at this moment in time
with respect to tools, as it is a very active and engaged community.

Chapter 7 by Dewan provides an overview of a broad variety of collaborative
software engineering tools (over 50), grouped into two categories. The first category
of tools distinguishes itself by aiming “towards being there”, that is, these tools over-
come geographical and other boundaries by providing technological solutions that
mimic co-located collaboration as closely as possible. The second category of tools
aims “beyond being there”, introducing functionality that is generally not available
in co-located collaboration yet useful in supporting the collaborative effort. Through
a historical and incremental analysis of how new tools fix deficiencies with previous
tools, a holistic perspective emerges.

Chapter 8 by Sarma, Al-Ani, and co-authors introduces a host of collaborative
software development tools that were developed under the continuous co-ordination
paradigm, blending formal and informal co-ordination techniques to enable effective
and spontaneous co-ordination actions to take place. The paper also highlights the
difficulties involved in evaluating collaborative software engineering tools. Short of
real-world use, compromises must be made. Using the DESMET evaluation frame-
work, each of the tools in the continuous co-ordination suite is evaluated according
to its objectives.

Chapter 9 by Murta, Werner, and Estublier examines the state-of-the-practice in
software configuration management and places it in the context of five critical col-
laboration needs: communication, awareness, co-ordination, shared memory, and
shared space. For each of these, the paper first discusses how the need is supported
by the current generation of (commercial) software configuration management tools,
and then presents key ongoing research towards improving how each need is sup-
ported. The paper concludes with an outlook at future trends, including challenges
introduced by such advances as model-driven engineering and cloud computing.

Chapter 10 by Lago, Farenhorst, and co-authors addresses a different artifact than
source code, choosing to focus on architectural knowledge management through the
GRIFFIN Collaborative Virtual Community. The paper introduces a set of collab-
oration scenarios among architects as they are located at different locations and
exhibit different backgrounds and roles, and uses the scenarios to define a con-
ceptual model for a virtual community of architects. Key is that the scenarios and
community support both formal and informal interactions, a necessity to provide
broad and effective support.

Chapter 11 by Nakakoji, Ye, and Yamamoto examines the topic of expertise com-
munication and its role in collaboration. Through a carefully thought out theoretical
perspective, it particularly identifies expertise communication as a different form
of communication from co-ordination communication, with its own challenges,
demands, and needs. It then provides a set of nine key design principles to be fol-
lowed when designing and implementing expertise communication functionality in
developer-centered collaborative software development environments.
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Chapter 7
Towards and Beyond Being
There in Collaborative Software Development

Prasun Dewan

Abstract Research has shown that the productivity of the members of a software
team depends on the degree to which they are co-located. In this chapter, we present
distributed tools that both (a) try to virtually support these forms of collabora-
tion, and (b) go beyond co-located software development by automatically offering
modes of collaboration not directly supported by it.

7.1 Introduction

A variety of novel tools have been created to allow software developers to collab-
orate with each other. This chapter classifies them based on whether they try to
(a) make software developers feel they are co-located, or (b) provide features not
found in co-located collaboration. The result is an overview that relates concepts
not linked together earlier, which include not only research tools but also studies
that motivate/evaluate them. Each of the surveyed works is described by showing
how it builds on or overcomes problems of other research addressed in this chapter.
By focusing only on the differences among these works, the chapter covers a large
variety of concepts, from over fifty papers. It is targeted mainly at the practitioner
familiar with the state of the art, rather than the researcher working on improving
current practices. Nonetheless, the interrelationships among the referenced works
should be of interest to everyone. In particular, a new researcher in this area should
be able to find holes in existing designs and evaluations.

Naturally, not all aspects of all research in collaborative software development
are covered, or all viewpoints taken. By focusing on the “being there” and beyond
themes, this discussion concentrates on the nature of the collaboration rather than
the form of software engineering such as design and inspection. It addresses tools
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and related studies, rather than collaboration theories, cultural issues, organizational
structures, studies that have not yet informed tool design, and other aspects of col-
laborative software development. Finally, it is intended to be a broad overview of the
area, identifying relationships among diverse classes of research, rather than among
different approaches within a particular class such as expert finders.

It begins by identifying the various degrees of physical co-location that have
had an impact on software productivity. It then presents virtual channels that allow
distributed developers to simulate these forms of co-location, and go beyond.

7.2 Productivity vs. Co-Location Degrees

Complex software must be developed collaboratively. However, Brooks [4]
observed that adding more people to a software team can result in disproportion-
ate increase in coordination cost, thereby reducing the productivity of the individual
programmer. Surveys have found that, on an average, 50-80% of software devel-
opers’ time is taken by communication [2, 44] and they are interrupted every three
minutes [24].

These results seem unintuitive for two reasons. First, modular decomposition
of software products should isolate software developers. Second, documentation
should reduce the need for direct communication. However, studies have found
that the approaches of documenting and partitioning are far from a panacea. Curtis
et al. [10] found documentation is problematic for several reasons. Requirements,
designs and other collaborative information keep changing, making it hard to keep
their documentation consistent. After finishing an activity, software developers often
choose to proceed to the next task rather than document the results of what they have
done. People may deliberately hide information for career advancement. Sometimes
there is conflicting information from different stakeholders that needs to be resolved
through meetings. For example, for a defense project, the following stakehold-
ers may provide different requirements: the champions responsible for getting the
project approved the procurement office responsible for setting and monitoring the
goals, the commanders, and the actual operators of the software to be created by the
project.

Perry et al. [43] found that modularizing a project into multiple files does not
isolate programmers. They studied Lucent’s SESS system and found a high level
of concurrency in the project — for example, they found hundreds of files that were
manipulated concurrently by more than twenty programmers in a single day. Often
the programmers edited adjacent or same lines in a file. They found that the more a
file is accessed concurrently, the more the numbers of defects in it, despite the fact
that state-of-the-practice versions control tools were used. There are many possible
reasons for this correlation. After checking-in a file, a programmer may remember
that some necessary change was not made, and to correct this mistake, may change
the file in-place without creating a new version [26]. Programmers concurrently
working on.different private spaces.(created from the same base) often race to finish
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first to avoid having to (a) deal with merging problems [26] and/or (b) re-run test
suites on the merges [13, 14]. Programmers may not look at the documentation of
previous versions to understand the code they are modifying [27]. Indirect conflicts
on related files are not caught by differencing or file-based locking. Few people have
a sense of the overall picture or the broad architecture [10, 27] which is required to
reduce indirect conflicts.

All of the studies above assumed that team members are co-located in a single
building and work from separate cubicles. If coordination/communication is really
an issue, as these studies indicate, then distributing the team should further aggravate
this problem and radically co-locating it, that is, requiring all team members to work
in a single war-room, should reduce it. Two independent studies have found that this
is indeed the case — the productivity of distributed teams was lower than that of co-
located teams [32] and the productivity of radically co-located teams was higher
than that of co-located ones [53].

The study comparing co-location and distribution [32] found that in distributed
team development, it was harder to find people, get work-related information
through casual conversation, get access to information shared with co-located co-
workers, get timely information about plan changes, have clearly formed plans,
agree about plans, be clear about assigned tasks, and have co-workers assist with
heavy workloads, beyond what they are required to do. Interestingly most people
thought that they gave help equally to local and remote collaborators but received
more help from local collaborators. The study found that the perception of received
help was the only factor that correlated with productivity.

The study on radical co-location [53] found two main factors that made it work
better. First, there was continuous face-to-face communication among team mem-
bers. Second, they were able to overhear and see each other’s activity, which allowed
them to solve their problems and interject commentary, clarifications and correc-
tions. On the other hand, the study found that people sometimes wanted private
spaces, and there was concern about distraction and getting individual recognition
for work.

In radical co-location, even though the members of the team work in one room,
they use different workstations. Higher physical coupling is achieved in pair pro-
gramming, wherein two programmers sit next to each other, sharing a workstation
and working on a single task, with only one programmer providing input to the
workstation at one time. One study comparing pair and individual programming
produced several interesting findings. It found that in the pair programming case
(a) 80% of programmers felt higher satisfaction, (b) more alternatives were explored
and fewer lines written, and (c) there was more team building as programmers
were involved with each other and enjoyed celebrating project-completion together.
Even more interesting, it found that pair programming took more person hours
but resulted in fewer bugs [55]. Assuming certain times for fixing and detecting
bugs, the study established that pair programming actually increases the productiv-
ity of an individual programmer. This result seems to contradict Brooks’s law [4]
which says that adding more programmers to a late project makes it later. The two
results-are.not,.in-fact, contradictory,-because Brooks assumed programmers were
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co-located but in separate cubicles. Thus, he did not consider radical co-location or
pair programming.

The above studies, together, show that (a) communication and coordination are
problems in team software development, (b) the more the physical coupling between
members of a team, the less the severity of these problems. The moral, then, seems to
be to increase the co-location degree among team members to the maximum degree
possible.

Other work has shown that this conclusion is not necessarily correct. Nawrocki
and Wojciehowski [39] found pair programming often took about twice as many
person hours, though the pair-programming times showed less variance. Ratcliffe
and Robertson [45] found that programmers with high (self-reported) skills did not
like being paired with those with low skills.

More interesting, recent work has proposed a variation of pair programming,
called side-by-side programming, wherein two programmers, sitting next to each
other and using different workstations, work together on the same task [7]. A study
showed that, in comparison to pair programming, side-by-side programming offers
significantly lower completion times [40] while slightly reducing the understanding
developers have of code written by their partners. It also found that developers who
liked working together on a single task preferred side-by-side programming to pair
programming.

The more complicated argument, then, seems to be that there are both benefits
and drawbacks of tight physical coupling. Its strength is that multiple program-
mers can communicate with each other about a problem and possibly discuss it.
Its weakness is that it reduces concurrency even when communication/discussion
would be useless. More important, tight coupling may not always be preferred or
even possible. For team members who are geographically dispersed, a closer phys-
ical coupling is not an option. Even when a team is co-located, because of lack of
war-rooms in the workplace and the concerns mentioned above regarding radical co-
location, team members may work in different rooms/cubicles. Pair programming
is not widely practiced currently, and not always the most preferred or productive
coupling, and even if it were, different pairs would have looser physical couplings.
Thus, the communication/coordination problems of these couplings remain.

One way to address these problems is to provide virtual channels that simulate a
variety of physical couplings, making the team members feel that they are together
in a single building or room, or sitting in adjacent seats, or sharing a single worksta-
tion. This is consistent with the idea of taking steps towards virtually “being there.”
A complementary solution is to support virtual channels that reduce collaboration
problems existing in all forms of co-location. This is consistent with the idea of
virtually going “beyond being there” [34].

Examples of both kinds of channels exist in traditional — that is, state-of-
the-practice — tools. For example, IM systems provide the “towards being there”
functionality of synchronously chatting, and version control systems provide the
“beyond being there” functionality of asynchronous merging. The fact that, despite
the pervasiveness of these tools, communication/coordination is still a major issue
in_team.software.development.seems-to. indicate that there are opportunities to
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significantly improve existing collaboration channels. Several research efforts have
explored such opportunities. The remainder of this chapter surveys some of the
concepts identified by these research efforts, and experience with these concepts.

7.3 Towards Being There

7.3.1 Virtual Co-location and Radical Co-location

Co-location, especially radical co-location, allows developers to easily communi-
cate to the whole team events of shared interest. When the team is distributed,
several approaches have been devised and used for conveying this information.
A version control system provides a way for distributed programmers to formally
communicate some of this information through check-in comments. Grudin and
Poltrock [28] advocate the use of project Blogs to informally communicate with
co-developers. Gutwin et al. [29] found that email can be a practical alternative
for announcing important, infrequent events such as the starting and termination of
tasks.

For supporting continuous “stream of consciousness babbling” [31] of the kind
that can be expected in radical co-location, lighter weight tools have been developed.
Elvin [22] is an example of such a tool. Messages posted by a team continuously
scroll in a ticker tape. A tool with similar goals is RVM (Rear View Mirror) [31]
so named because it is intended as an unobtrusive background “rear view mirror”
for the members of the team as they performed their tasks. User studies yielded
several counter-intuitive results about desired features. Originally, the tool showed
users only the last few hours of those messages that were exchanged when they were
logged on. Based on user feedback it was changed to support all of the conversa-
tion. Also previously, an explicit permission had to be given to each person viewing
presence information. Based on user feedback, the system was changed to allow
each member of a team to see the presence information of all the other members.
Presence information was liked more than chat. In fact, managers exchanged only
two chat messages during the study!

A potential problem with the tools above is that a developer interacting with
a programming environment must switch to a separate tool to see the presence
information of and interact with co-developers. Jazz [6] and CollabVS [30] provide
these facilities, in-place, within the programming environment. A study of CollabVS
found that programmers preferred in-place presence and communication [30].

7.3.2 Distributed Pair Programming

The channels above simulate physical channels in radical and regular co-location.
Let us next consider concepts supporting the higher physical coupling provided by
pair programming.
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The easiest way to support such coupling is to use a generic desktop-sharing sys-
tem, which traps window level input events and window or frame-buffer level screen
updates, and transmits them to a remote collaborator. An alternative is to couples the
edit buffers and other components of the semantic state of the programming environ-
ment of the developers [20, Schummer #1092]. The former is slower and requires
use of a special, potentially unfamiliar system for sharing. On the other hand, the lat-
ter requires the developers to manually synchronize their views. A hybrid approach,
taken in Jazz [6] and CollabVS [30] is to add commands to the user-interface of a
programming environment to invoke a desktop sharing system [6, 30].

A study comparing distributed and co-located serial pair programming found that
physical distance does not matter [1]. This is an interesting result because, as men-
tioned above, studies of individual programming have found that distance reduces
productivity [32].

7.3.3 Distributed Side-by-Side Programming

As mentioned above, a variation of pair programming is side-by-side programming,
wherein two programmers sit next to each other working on the same task. It offers
(potentially) looser coupling than pair programming, as the developers can work
concurrently on different aspects of the task; and tighter coupling than radical co-
location, as they are required to work on a single task that has not been decomposed
for them; and more important, are able to see all actions of their partners.

Dewan et al. [17] have devised a distributed analog of this idea. Each developer
in the pair interacts with two computers — one primary computer to act as the driver
of his subtask, and an awareness computer to act as the navigator for the partner’s
subtask. In other words, each programmer interacts with the windows displayed
on his primary computer, and each awareness computer shows the screen of the
partner’s primary computer. The developers use the phone to talk to each other. No
video channel is established between them in this set-up.

A desktop sharing system is used to ensure that each awareness computer shows
the screen of the partner’s desktop. In addition a model-sharing system such as a
file system or a Web server is used to synchronously share edits to code made con-
currently on the two primary computers. Thus, the same input is shared at multiple
levels of abstraction — at the window level by the desktop sharing system and at the
semantic level by the model sharing system.

In this architecture, local response is not affected by the network delays, as is
the case in single-computer (desktop-sharing based) distributed pair-programming
implementations. Thus, the two-computer solution offers good response times for
even pure pair programming.

A study of distributed side-by-side programming showed that developers used
its ability to dynamically switch between pair programming, independent program-
ming, and several other intermediate synchronous programming modes such as
concurrent searching/programming [17].
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7.3.4 Distributed Synchronous Design and Inspection

Distributed pair programming is only one form of distributed synchronous software
engineering. It is particularly interesting because, traditionally, programmers col-
laborate asynchronously on different parts of a project rather than synchronously on
every line of code. On the other hand, activities that precede and succeed the coding
phase — design and inspection — are typically carried out in synchronous, face-to-
face meetings. Therefore, tools have been built and effectively used for distributed
synchronous design [41] and inspection [38]. A study of distributed synchronous
inspection has shown that it is as effective as face to face inspection in terms of
faults found, but developers preferred face-to-face inspection [38].

7.3.5 Other “Towards Being There” Mechanisms

There are a variety of other kinds of distributed tools such as connected kitchens
[35] video walls [25] and media spaces [37] which provide elements of being there
in the same building or room. However, as there have been no studies of their use in
team software development, we ignore them in this chapter. See [15] for a survey of
these and other tools that have not been targeted at software development.

7.4 Beyond Being There

Software tools that go beyond being there automate various aspects of collaboration,
and are thus useful for both (radically) co-located and distributed teams.

7.4.1 File System Events

Traditional version control systems provide an important form of collaboration
automation. When users check-out or check-in files from a version control repos-
itory, interested users are automatically notified about these events. O’Reilly et al.
[42] point out that it is also useful to monitor operations at the file-system level, for
several reasons. Sometimes users manually change the permissions of files to make
them writeable instead of checking them out from the repository. A new project file
is not known to the repository until it is checked in. A repository tracks events at
the user level — sometime a user takes multiple personas, creating multiple different
private workspaces from the same base. While working on one of these workspaces,
it is not possible for him to be notified about actions he took in another workspace.

Therefore they extend the repository events above with the following addi-
tional events: (a) Added/removed: A file known to the repository has been added
to/removed from project working directory pending commit. (b) Updated: A file in
the repository.-has.been.updated.in.the working directory. (c) Needs checkout: A file
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in the working directory has been updated in the repository. (d) Needs merge: A
file has been updated both in the working directory and the repository. (¢) Unknown
added/removed/updated: A file in the working directory not known to the repository
has been added/removed/updated.

7.4.2 Persistent Awareness vs. Notifications

An alternate to notifying interested developers about operations of their collabo-
rators on files is to update a persistent view of the file status in the user-interface
of a programming environment or a separate tool. For example, the Jazz [6] and
CollabVS [30] programming environments continuously indicate to developers
which files have been checked-out or are being edited by their team members. In
FASTDash [3] a separate tool provides this facility. Thus, programmers interested in
knowing, for example, if a file is being currently edited by a collaborator need only
look at the persistent view rather than mine through the event history to determine
this information. On the other hand, changes to the awareness information may go
unnoticed. For example, if two developers start editing the same file, neither of them
may notice the change to the view of the file status. Thus, both persistent awareness
of and notifications about collaborators’ operations on files/versions are useful.

7.4.3 Programming Environment Events

Operations on objects maintained by a programming environment that are not
known to the file or version control system may also be of interest to collaborators.
These include starting/stopping of the editing of a particular program construct such
as method or class [19, 50, 51] and concurrent editing of the same or dependent pro-
gram constructs [19, 46, 50]. Awareness of this information can be provided through
notifications or updates of persistent status views. For example, in CollabVS, con-
current editing of dependent program constructs results in both notifications and
updates of awareness views [19].

Three studies have shown the usefulness of providing awareness of programming
environment events. A study of Tukan found that when programmers found them-
selves editing the same program construct, they transformed their individual coding
sessions into a joint pair programming session [51]. Two studies, of CollabVS and
Palantir, respectively, have found that programmers used information about concur-
rent editing of dependent constructs to prevent direct and indirect conflicts [19, 48].
The comments from the CollabVS study [19] also showed that programmers liked
having information about programming environment events even when these events
had no apparent benefit such as conflict prevention. Hegde and Dewan [30] give
several scenarios in which awareness of programming environment events may be
useful. For example, if Alice sees Bob taking an undue amount of time editing a
method, she can.offer.to-help.-him with the task.
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7.4.4 Shared Version with Multiple Views

Suppose Alice does wish to help Bob finish his task. One approach to do so is to
use distributed pair or side-by-side programming. As mentioned above, distributed
pair programming requires her to work lock step with Bob, not allowing concurrent
work on the task. The scheme for distributed side-by-side programming described
above addresses this issue, but suffers from two related drawbacks in its attempt to
faithfully mimic co-located side-by-side programming. First, it requires each pro-
grammer to view a separate display to observe his partner’s incremental updates.
Second, to receive these edits, the developer must manually pull them from the file
system or web server. These updates are not automatically pushed to him.

Some software development systems have addressed these two problems using a
variation of distributed side-by-side programming. In these systems, as in side-by-
side pair programming, the developers work on the same version of the code-base.
The difference is that they can edit it concurrently using different views of it that
are updated automatically or manually. This is a special case of the general idea
of editing the same model using multiple views [18]. Changes to the model can be
pulled and pushed at various time and space granularities depending on the coupling
between the views [18].

An early system supporting this approach was Flecse [20] which provided tools
that allow programmers to do synchronous concurrent editing, debugging, testing
and inspection. As motivation for such tools, the paper on Flecse [20] provides
the following hypothetical scenario. Three users have finished creating different
procedures of a matrix multiplication program. One of them finds an error in the
output. Two of them use the Flecse collaborative debugger to jointly work with
another to find the bug. The two users find that the bug can be fixed by changing the
semantics of one, of two procedures and cannot agree on which, one of these should
be changed. They use the Flecse multi-user inspection tool to hold a more formal
code-review meeting involving all three users to make the decision. The tool allows
them to make their annotations privately before discussing them in public. The
code review session suggests changing both procedures to eliminate other related
errors.

A follow-up to this work was CAIS [38] an inspection tool supporting both asyn-
chronous and synchronous inspection. User studies with this tool [38] found that
people preferred to perform software inspection asynchronously, until the discussion
became controversial, when they switched to synchronous discussion.

Several other tools have been built based on these ideas. CollabVS [30] allows
developers to asynchronously share the contents of their edit buffers before checking
them to the version control system. SubEthaEdit and Sun’s JSE 7 allow synchronous
editing of the same file in different views. JSE 7 also supports synchronous collabo-
rative inspection by allowing code to be sent through the chat tool, which correctly
formats it. Users can independently scroll the shared code and user comments about
it in the chat window, thereby seeing different views of the inspection data.

Unlike the scheme for distributed side-by-side programming, none of these sys-
tems.require.a-special.awareness.screen..In these systems, when developers edit the
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same model using different views, they can lose track of the activities of their col-
laborators. As a separate screen for showing these activities is not guaranteed, more
space efficient and thus higher level mechanisms are needed for allowing the team
members to be aware of each others’ views. These mechanisms are different from
those we saw above that allow developers to be aware of the semantic or model
changes of their collaborators. For example, a multi-user scrollbar in SubEthaEdit,
which shows the scrollbars of the collaborators, provides view awareness, while
awareness about the methods being edited by collaborators, provided by CollabVS
[30] provides model awareness.

Few studies have been performed