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Foreword

While many empirical studies over the years have shown that software development
skills and aptitude vary between individuals, the reality is that the size, complex-
ity and longevity of software development projects and artefacts far exceed what
any individual software developer can manage on her own. Collaboration among
individuals – from users to developers – is therefore central to modern day soft-
ware engineering. Collaboration takes many forms: joint activity to solve common
problems, complementary activity to solve diverse problems, and both social and
technical perspectives impacting all software development activity.

The difficulties of collaboration are also well documented. For example, when
managerial instinct in dealing with a problematic software project was to add more
developers to the development team, Fred Brooks observed and argued in his clas-
sic book The Mythical Man Month (Addison-Wesley, 1975) that such additions
impaired rather than speeded up development. Reflecting on Brooks’ observation,
one could argue that it is not the addition of developers per se that is problematic,
but the lack of effective means by which they are able to collaborate effectively that
is crucial. Indeed the grand challenge of effective collaboration is not only to ensure
that developers in a team deliver effectively as individuals, but that the whole team
delivers more than the sum of its parts.

Enabling effective collaboration of course is easier said than done. As this book
shows, there are many dimensions of collaboration, and many different develop-
ment contexts in which different forms of collaboration are necessary and effective.
The many tools and techniques that work in one context may not work in another.
Collaborative software engineering therefore provides a fertile ground for empirical
research on collaborative practices and collaboration tools, for technology research
on developing tools and techniques for supporting collaboration, and operational
research to understand organisational structures, processes, and experiences that
impact, or are impacted by collaboration. This book is a welcome contribution to
the research discourse in all these areas of study.

As a doctoral student some 20 years ago, I was very interested in understanding
and supporting multiple software development stakeholders, as they articulated their
differing perspectives of software problems and solutions, developed some shared
understanding of their problem and solution worlds, and crucially important in my
view, as they agreed to disagree about the parts of the world where their perspectives
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differed. Acknowledging, understanding and tackling disagreements head on was
and is, in my view, fundamental to effective collaboration, and remains at the heart
of collaborative software engineering research. While much progress has been made
in the area of conflict management research, I believe that it remains a key area for
tackling the challenges of supporting effective collaborative software engineering.

The editors of this book have assembled an impressive selection of authors, who
have contributed authoritative body of work tackling a wide range of issues in the
field of collaborative software engineering. The book will be of tremendous value to
practitioners grappling with managing multi-person software development activity,
as well as researchers and students interested in the state-of-the-art and the many
research directions in this area. The volume is not simply a collection of papers,
but a thoughtful assembly of contributions, suitably structured and introduced by
the editorial team. Many of the chapters reflect on a body of research and practice
that spans many years gone past, while other chapters pose research questions and
describe research problems that are fundamental and long-standing. The result is a
reference book, a research resource, and a pleasurable read.

Milton Keynes, UK Bashar Nuseibeh
June 2009
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Preface

Software engineering is almost always a collaborative activity. This book brings
together a number of recent contributions to the domain of Collaborative Software
Engineering (CoSE) from a range of research groups and practitioners. These range
from tools and techniques for managing discrete, low-level activities developers
engage in when developing parts of software systems; knowledge, project and pro-
cess management for large scale collaborative software engineering enterprises;
and new ways of organizing software teams including outsourcing, open sourcing,
highly distributed virtual teams and global software engineering. We believe that all
practitioners engaging in or managing collaborative software engineering practices,
researchers contributing to advancement of our understanding and support for col-
laborative software engineering, and students wishing to gain a deeper appreciation
of the underpinning theories, issues and practices within this domain will benefit
from most if not all of these contributions.

Introduction

Ever since people began to create software there has been a need for collaborative
software engineering. At some point people need to share their code and designs
with others. Software frequently grows large and complex, thus requiring a team
of multi-talented experts to work together to tackle the project. Such a team must
adopt suitable processes and project management to ensure the myriad of tasks are
completed; to keep track of what each other is doing; and to ensure the project
advances on-time, on-budget and with the software meeting appropriate quality lev-
els. The team must share both low-level artifacts and higher-level knowledge in
controlled, consistent ways, be proactively informed of changes others make, and
co-ordinate their work “in the small” as well as “in the large”. Various studies have
demonstrated that peer review of designs and code improve them, leading to collab-
orative testing and quality assurance practices. Recent trends have moved software
across organizational and country boundaries, including virtual software teams and
open source software development. Agile methods have brought bottom-up, human-
oriented processes and techniques to bear that are very different from traditional,
centralized and hierarchical development practices.

vii
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Our understanding of and support for collaborative software engineering has
advanced tremendously over the past forty years. We understand that team formation
and management is not a straightforward task. However we are still learning about
formation, management and evolution in domains such as agile teams, projects with
substantive outsourcing, open source software, virtual software teams and global
software engineering domains. Knowledge management is critical in software engi-
neering and we have developed as a community many approaches to representing
knowledge about software as well as tools to facilitate its capture. However, shared,
evolving knowledge and appropriate tools and techniques to support this is less well-
understood from both theoretic and practical standpoints. How do we best represent
and collaboratively manage knowledge about requirements, architecture, designs,
quality assurance measures and software processes themselves? Social influences
on software engineering and teams have become more important as have organi-
zational implications. How do team members relate to one other and how to we
build effective team relationships for communication, co-ordination and collabora-
tion? How do we set up a successful multi-site software project? A successful open
source project? A successful outsourcing project?

The actual act of collaborative software creation has received much attention over
many years. But what are the right sets of tools and work practices to deploy on
a collaborative software engineering project to best-support engineers and ensure
quality? What are the unsolved issues around co-ordination especially in large
or highly distributed teams? Configuration management remains one of the most
challenging activities in collaborative software engineering.

Book Overview

We have divided this book into four parts, with a general editorial chapter provid-
ing a more detailed review of the domain of collaborative software engineering.
We received a large number of submissions in response to our call for papers and
invitations for this edited book from many leading research groups and well-known
practitioners of leading collaborative software engineering techniques. After a rig-
orous review process 17 submissions were accepted for this publication. We begin
by a review of the concept of collaborative software engineering including a brief
review of its history, key fundamental challenges, conceptual models for reason-
ing about collaboration in software engineering, technical, social and managerial
considerations, and define the main issues in collaborative software engineering.

Part I contains five chapters that characterize collaborative software engineer-
ing. This includes characterizing global software engineering via a process-centric
approach, requirements-driven collaboration using requirements/people relation-
ships, decoupling in collaborative software engineering, agile software development
and co-ordination, communication and collaboration, and applying the concept of
ontologies to collaborative software engineering.

Part II contains five chapters that examine various techniques and tool sup-
port issues in collaborative software engineering. This includes an analysis of
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awareness support in collaborative software development teams, an overview of sev-
eral approaches and tools to supporting continuous co-ordination, a maturity model
for outsourcing offshore, an architectural knowledge management platform, and a
set of design principles for collaborative software engineering environments.

Part III contains three chapters addressing the issue of organizational issues in
collaborative software engineering. This includes supporting the concept of col-
laborative software analysis and making analysis tools widely accessible, open
source software project communication and collaboration analysis and visualization
support, and a review and critique of multi-site software development practices.

Part IV contains four chapters looking at a variety of related issues in the collab-
orative software engineering domain. These include key open source/free software
development collaboration issues, configuration management and collaborative
development, knowledge sharing to support collaborative software architecting, and
rationale management to enhance collaborative requirements engineering. We con-
clude with a summary of current challenges and future directions in collaborative
software engineering.

What Is Collaborative Software Engineering?

Collaboration has been a necessity ever since software engineering began. The early
days of software engineering saw very limited process, technique and tool support
for collaboration. Early efforts to support collaboration were limited to structured,
waterfall-based processes, early version control tools, rigid team role special-
ization, and centralization of software activities. The advent of Computer-Aided
Software Engineering tools and Integrated Development Environments introduced a
wider, more accessible range of collaboration support mechanisms including aware-
ness support, collaborative analysis and reviews and iterative, rapid applications
development processes. More recently has seen the growth of distributed teams,
outsourcing, open source software projects, global software engineering processes
and highly decentralized team support tools.

Fundamental challenges in collaborative software engineering remain the same:
the need to share artifacts, communicate and co-ordinate work. These occur across
a spectrum of low-level to high-level. Low-level challenges include making shared
artifacts like code, tests and designs accessible in a timely manner to team members
while controlling access, ownership, integrity and quality. Large software projects
require effective version control and configuration management techniques and
tools. Knowledge management is fundamental especially around design rationale,
architecture and processes. Software development has changed dramatically over
the past 10 years. This is evidenced by new organizational and team dynamics
including open source software, software outsourcing, distributed teams, and global
software engineering. Choice of processes, project management, tools and evolution
of software in these domains is still an emerging field of research and practice.

Key technical considerations in collaborative software engineering revolve
around process, project management, knowledge and configuration management
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and tool platform selection and operation. A software process and project man-
agement regime must be chosen that supports collaboration appropriate to the
team, project and organizational circumstances. These range from small, single-
site/single-project teams, to large team/multi-project/multi-site domains. The later
may include outsourcing and open source components. Complex software systems
require effective knowledge management approaches and support tools. They also
require scalable configuration management tools. Tool platforms and collaboration-
supporting components have become very diverse. These range from small-team,
homogeneous IDEs with awareness and collaboration plug-ins to highly diverse
platforms where software engineering is part of a larger systems engineering activ-
ity. Communication support between engineers often becomes a crucial component
of the team support infrastructure.

Being an inter-personal and–often–inter-organizational activity, collaborative
software engineering introduces a number of social and managerial challenges.
Teams may be homogeneous or highly diverse in terms of culture, language and
location. This introduces many challenges to supporting collaboration at high levels
(process, project management) and low-levels (artifact sharing, consistency). Teams
may be comprised of many generalist’s e.g., agile methods or highly specialized
individuals or sub-teams whose efforts must be coordinated. An organization needs
to ensure appropriate management of teams and between teams. In particular, global
software engineering domains introduce very new and challenging problems, such
as in contracting and quality control in outsourcing, ownership and “group dynam-
ics” in multi-site projects, and overall project direction and co-ordination in open
source software projects.

Part I – Characterizing Collaborative Software Engineering

The five papers in this section identify a range of themes around the characteris-
tics of collaborative software engineering. There has been a dramatic increase in
interest in the concept of “global software engineering” over the past 10 years. This
has included the increasing number of distributed, multi-site software engineering
teams; outsourcing of software engineering activities, often in search of cost savings
and capacity limits, and open source software development. Each of these trends
brings with it added complexity to the engineering process—software engineers are
no longer co-located, are no longer in regular face-to-face contact (if at all), and
different time zones, cultures and languages enter the mix.

A number of studies have been undertaken to better-understand the issues of
collaboration challenges in such “virtual” software team environments. A key aim
is to understand factors that adversely impact on collaboration practices and fac-
tors that support communication, co-ordination and collaboration in such domains.
Studies have focuses on a range of organizations, projects and team sizes. One area
of particularly detailed study has been requirements engineering. A distributed team
develops and shares a set of requirements and a crucial factor impacting quality of
these is communication strategies.
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Knowledge engineering has become important in collaborative software
engineering. One aspect is the development of ontologies, or shared semantic mean-
ings, of software artifacts and processes. These enable co-ordination of activities
along with improved communication about shared concepts in domains ranging
from requirements engineering to software architecture.

Agile methods have become popular in many domains of software engineering.
A characteristic is their focus on people-centric aspects of software engineering
tasks, including communication and co-ordination. Pairing is one aspect of several
agile methods that offers a tangible way to encourage improved collaboration
outcomes.

Part II – Tools and Techniques

Software engineering requires a number of complex, interleaved activities to be car-
ried out. These must be organized into logically correct teamwork and be supported
by appropriate tools. Because of the challenges of supporting collaborating in an
already complex engineering process, a multitude of techniques and tools have been
developed to support almost all activities of collaborative software engineering.

Traditionally software engineering had been a co-located activity where team
members could expect some degree of face-to-face communication and collabora-
tion and co-ordination were important activities but discrete and compartmentalized.
Outsourcing parts of a software engineering project and highly iterative agile pro-
cesses have led to an increased interest in how to best support virtual, distributed
collaboration and communication and co-ordination for team activities that repeat
in days rather than months.

A range of support mechanisms and associated tool support have appeared in
recent years to address concerns in both traditional but more particularly these
newer domains of collaborative software engineering. Social networking-style sup-
port such as tagging, shared knowledge repositories and communication support
have become popular. New search-based support and associated visualization sup-
port have become more important as developers are less familiar with large tracts of
software systems. These include mining of software repositories and context-aware
filtering mechanisms in IDEs. Event-based support mechanisms have always been
popular in collaborative support environments. These have been explored further
in the context of both same-place and distance-located teams to support proactive
notification and various levels of group awareness.

Developer-centric software engineering tools are crucial and this includes sup-
port for collaboration. Areas of particular interest in these tools are knowledge
management and expertise communication. Knowledge management requires use
of shared ontologies and supporting authoring tools, but as importantly the develop-
ment of true “virual communities” where informal knowledge sharing is supported
and encouraged. Expertise communication is one aspect where the collaboration
environment allows increasingly geographically dispersed team members to better
communicate both knowledge and expertise relating to knowledge and tasks.
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Part III – Organizational Experiences

Multi-site, or geographically distributed software development, has introduced a
range of unknowns into software engineering practice and research. Of particular
note is the lack of guidance around process selection. When running a multi-site,
geographically distributed software project, what is the “best” software process to
choose to organize this activity, quite apart from tool, project management and team
selection issues? How can organizations make process choices, in particular, to best
exploit multiple time zones, team expertise, out-sourced and open-sourced parts of a
product, and ensure quality, cost and timeliness thresholds? Two fundamental ways
of organizing a distributed project are centralized control of overall process and
distribution of scoped design/code/test, compared with distributing different phases
e.g. requirements team, design and build team, testing team in different locations.

Open source software projects are an increasingly common model of distributed,
virtual software teams. Many studies have looked at collaboration aspects of such
projects, in particular the evolution of the code base and team communication and
co-ordination patterns. Recovering such information is challenging–often via bug
reports, detailed code analysis and informal interviews of key team members. It is
still an unsolved research problem how to best set up an open source project to
achieve high quality communication and co-ordination.

Software artifact analysis has been used extensively for many years. This
includes static analysis of source code, tests, designs and requirements and dynamic
analysis of execution traces, side-effects and formal models of code. Collaboration
around analysis has often been informal and poorly structured. Given the increasing
complexity of code and analysis tools and techniques, an open challenge is how
to share analysis processes and techniques, and also the tools supporting these,
particularly across organizations.

Part IV – Related Issues

A number of socio-technical issues arise in collaborative software engineering.
In free and open source software development projects these are particularly
challenging. Key issues include overall project ownership and co-ordination,
task de-composition, trust, accountability, commitment and social networking.
Collaboration affordances in the individual and group development ecosystem must
support both the range of collaboration activities but take into account the free and
open source domain of work.

Knowledge sharing is crucial in all domains of software engineering. Particular
domains of interest include requirements engineering and software architecture
where commissioner, engineer, manager and end user constraints intersect and often
must be balanced. Knowledge sharing in collaborative software architecting sup-
ports better decision making, surfacing of assumptions, and reasoning about design
decisions. In product line engineering, variability management is a key challenge,
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particularly when faced with multi-site software teams. Rationale management can
be used to augment the variability management process to improve collaboration
support in this context.

Configuration management has long been a challenge in software engineering
particularly as systems have grown enormously in size and complexity. As con-
figuration management requires integrating many software artifacts and ultimately
impacts all phases of proceeding development, configuration management support
systems have been an early contributor to collaborative software engineering infras-
tructure. They provide a shared space, awareness support, record and enable tracing
of team actions, and support both knowledge sharing and communication. Many
outstanding research and practice issues exist in each of these areas of configura-
tion management systems support, however, leading to next generation collaborative
software engineering tools.

Current Challenges and Future Directions

Collaborative software engineering has been a very heavily researched area and
almost all practicing software teams will need to engage in it. However, many chal-
lenges still present both in terms of adopting collaboration practices, processes and
tools and improving the state-of-the-art. Many of these challenges are long stand-
ing, and hence are fundamental to the act of working together to engineer shared
artifacts. These include assembling teams, dividing work, social networking within
and between teams, choosing best-practice processes, techniques and supporting
tools, and effective project management. Others have arisen due to new organi-
zational practices and technical advances, including open-sourced, out-sourced,
multi-site and agile software engineering contexts. We still do not know the ideal
way to share knowledge, facilitate the most effective communication, co-ordinate
massively distributed work, and design and deploy support tools for these activities.

Auckland, New Zealand John Grundy
Heidelberg, Germany Ivan Mistrík
Irvine, CA, USA André van der Hoek
Santa Cruz, CA, USA Jim Whitehead
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Chapter 1
Collaborative Software Engineering:
Concepts and Techniques

Jim Whitehead, Ivan Mistrík, John Grundy, and André van der Hoek

Abstract Collaboration is a central activity in software engineering, as all but the
most trivial projects involve multiple engineers working together. Hence, under-
standing software engineering collaboration is important for both engineers and
researchers. This chapter presents a framework for understanding software engi-
neering collaboration, focused on three key insights: (1) software engineering
collaboration is model-based, centered on the creation and negotiation of shared
meaning within the project artifacts that contain the models that describe the final
working system; (2) software project management is a cross-cutting concern that
creates the organizational structures under which collaboration is fostered (or damp-
ened); and (3) global software engineering introduces many forms of distance –
spatial, temporal, socio-cultural – into existing pathways of collaboration. Analysis
of future trends highlight several ways engineers will be able to improve project
collaboration, specifically, software development environments will shift to being
totally Web-based, thereby opening the potential for social network site integration,
greater participation by end-users in project development, and greater ease in global
software engineering. Just as collaboration is inherent in software engineering, so
are the fundamental tensions inherent in fostering collaboration; the chapter ends
with these.

1.1 Introduction

Software projects are inherently co-operative, requiring many software engineers to
co-ordinate their efforts to produce a large software system. Integral to this effort
is developing shared understanding surrounding multiple artifacts, each artifact
embodying its own model, over the entire development process [97].
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Software engineers have adopted a wide range of communication and collabora-
tion technologies to assist in the co-ordination of project work. Every mainstream
communication technology has been adopted by software engineers for project
use, including telephone, teleconferences, email, voice mail, discussion lists, the
Web, instant messaging, voice over IP, and videoconferences. These communica-
tion paths are useful at every stage in a project’s lifecycle, and support a wide range
of unstructured natural language communication. Additionally, software engineers
hold meetings in conference rooms, and conduct informal conversations in hall-
ways, doorways, and offices. While these discussions concern the development of
a formal system, a piece of software, the conversations themselves are not formally
structured (exceptions being automated email messages generated by SCM systems
and bug tracking systems).

In contrast to the unstructured nature of conversation, much collaboration in soft-
ware engineering is relative to various formal and semi-formal artifacts. Software
engineers collaborate on requirements specifications, architecture diagrams, UML
diagrams, source code, and bug reports. Each is a different model of the ongoing
project. Software engineering collaboration can thus be understood as artifact-based
or model-based collaboration, where the focus of activity is on the production of new
models, the creation of shared meaning around the models, and elimination of error
and ambiguity within the models.

This model orientation to software engineering collaboration is important due to
its structuring effect. The models provide a shared meaning that engineers use when
co-ordinating their work, as when engineers working together consult a require-
ments specification to determine how to design a portion of the system. Engineers
also use the models to create new shared meaning, as when engineers discuss a UML
diagram, and thereby better understand its meaning and implications for ongoing
work. The models also surface ambiguity by making it possible for one engineer to
clearly describe their understanding of the system; when this is confusing or unclear
to others, ambiguity is present. Without the structure and semantics provided by
models, it would be more difficult to recognize differences in understanding among
collaborators.

These twin threads – the appropriation of novel communications technologies
for project work, and the model-centric nature of collaboration – are what give the
study of software engineering collaboration its unique character. Focusing just on
communication, the low cost and global reach of email, web, and instant messaging
technologies created the potential for global, multi-site software engineering teams.
This made it less expensive to globally distribute closed source projects, and cre-
ated the technological conditions that supported the emergence of open sourceopen
source software. In turn, understanding how best to structure and support this
communication-afforded collaboration within distributed software engineering has
been the focus of sustained study. Much traditional collaborative work research
has focused on the use of novel communication technologies in a variety of work
settings, viewing them as artifact-neutral co-ordination technologies. What dis-
tinguishes the study of collaboration within software engineering from this more
general study of collaboration is its focus on model creation. Software engineers are
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not just collaborating in the abstract – they are collaborating over the creation of a
series of artifacts that, together, provide a multi-faceted view of the behavior of a
complex system.

1.2 Defining Collaborative Software Engineering

Collaboration is pervasive throughout software engineering. Almost all non-trivial
software projects require the effort and talent of multiple people to bring it to con-
clusion. Once there are two or more people on a software project, they must work
together, that is, they must collaborate. Thus, a simple ground truth is that any soft-
ware project with more than one person is created through a process of collaborative
software engineering.

There is an old story, running through many cultures, about six blind men and
an elephant. One man touches the elephant’s trunk, and says the elephant is a rope.
Another touches a leg, and says the elephant is a tree trunk. The remaining four
describe the elephant as a snake (tail), spear (tusk), wall (body), or brush (end of
tail). A large software system is like the elephant in the story, with each software
engineer having their own view and understanding of the overall system. Unlike the
story, a software system under development lacks the physical fixedness of the ele-
phant; one cannot simply step back and see the shape of the entire software system.
Instead, a software system is shaped by the intersecting activities and perspectives
of the engineers working on it. Software is thought-stuff, the highly malleable con-
version of abstractions, algorithms, and ideas into tangible running code. Hence
software engineers shape the system under construction while developing their
understanding of it.

Human minds are enormously flexible, approaching problems from unique
experiential, cultural, educational, and biochemical conditions; developers have
widely varying backgrounds and experiences, come from different cultures, have
different types of educational backgrounds, and have varying body chemistry.
Somehow, through the imperfect instrument of language, the vast pool of vari-
able outcomes inherent in any software system needs to be reduced to a single
coherent system. In this view, software engineering collaboration is the media-
tion of the multiple conflicting mental conceptions of the system held by human
developers.

Collaboration takes the form of tools to structure communication and lead to
consensus, as in the case of requirements elicitation tools. Other tools mediate
conflicts among differing views of the system, as in the case of configuration
management tools both preventing conflicting viewpoints from being realized as
incompatible code changes, and providing a process for handling conflicts when
they occur (merge tools). Tools for representing design and architecture diagrams
also help to mediate conflicts by making internal mental models explicit, thereby
allowing other actors to identify points of departure from their own views of the
system.
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Since software is so abstract and malleable, and is created via a process of nego-
tiating multiple viewpoints on the system, it is inevitable that software will have
errors. Consequently, software engineering collaboration also involves the joint
identification and removal of error. This can be seen in software inspections, where
multiple engineers bring their unique perspectives to the task of finding latent errors.
It is also visible in test teams, where many engineers work together to write system
test suites, and use bug tracking software to co-ordinate bug fixing effort.

People have a hard time working together effectively. To work well together,
engineers need to understand near-term and long-term goals, be clustered into teams,
and understand their personal responsibilities. Engineers also need to be motivated,
and receive appropriate reward for their work. Hence, software engineering collab-
oration is about creating the organizational structures, reward structures, and work
breakdown structures that afford effective work towards goal. As a consequence,
software engineering management and leadership is an integral part of software
engineering collaboration.

1.3 Historical Trends in Collaborative Software Engineering

Software engineers have developed a wide range of model-oriented technologies
to support collaborative work on their projects. These technologies span the entire
lifecycle, including collaborative requirements tools [5, 39], collaborative UML
diagram creation, software configuration management systems and bug tracking
systems [11]. Process modeling and enactment systems have been created to help
manage the entire lifecycle, supporting managers and developers in assignment of
work, monitoring current progress, and improving processes [7, 57]. In the commer-
cial sphere, there are many examples of project management software, including
Microsoft Project [69] and Rational Method Composer [42]. Several efforts have
created standard interfaces or repositories for software project artifacts, including
WebDAV/DeltaV [24, 98] and PCTE [96]. Web-based integrated development envi-
ronments serve to integrate a range of model-based (SCM, bug tracking systems)
and unstructured (discussion list, web pages) collaboration technologies.

Tool support developed specifically to support collaboration in software engi-
neering falls into four broad categories. Model-based collaboration tools allow
engineers to collaborate in the context of a specific representation of the software,
such as a UML diagram. Process support tools represent all or part of a software
development process. Systems using explicit process representations permit soft-
ware process modelling and enactment. In contrast, tools using an implicit represen-
tation of software process embed a specific tool-centric work process, such as the
checkout, edit, checking process of most SCM tools. Awareness tools do not sup-
port a specific task, and instead aim to inform developers about the ongoing work of
others, in part to avoid conflicts. Collaboration infrastructure has been developed to
improve interoperability among collaboration tools, and focuses primarily on their
data and control integration. Below, we give a brief overview of previous work in
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these areas, to provide context for our recommendations for future areas of research
on software collaboration technologies.

1.3.1 Model-Based Collaboration Tools

Software engineering involves the creation of multiple artifacts. These artifacts
include the end product, code, but also incorporate requirements specifications,
architecture description, design models, testing plans, and so on. Each type of
artifact has its own semantics, ranging from free form natural language, to the semi-
formal semantics of UML, or the formal semantics of a programming language.
Hence, the creation of these artifacts is the creation of models.

Creating each of these artifacts is an inherently collaborative activity. Multiple
software engineers contribute to each of these artifacts, working to understand what
each other has done, eliminate errors, and add their contributions. Especially with
requirements and testing, engineers work with customers to ensure the artifacts
accurately reflect their needs. Hence, the collaborative work to create software arti-
facts is the collaborative work to create models of the software system. Systems
designed to support the collaborative creation and editing of specific artifacts are
really supporting the creation of specific models, and hence support model-based
collaboration. Collaboration tools exist to support the creation of every kind of
model found in typical software engineering practice.

Figure 1.1 provides an overview of model-oriented collaboration across a soft-
ware project lifecycle. In the figure, rows represent different types of actors or
models, while columns represent different phases in the development of a soft-
ware system. Overlaps between bubbles for types of people represent collaboration.
So, for example, the overlap of stakeholders and requirements engineers in the
requirements column represents their collaboration to create the requirements doc-
umentation for the system to be built. Project management cuts across all project
phases and impacts all types of software engineer, hence it is represented as a hor-
izontal bar. Remote collaboration occurs when the set of people within a bubble
is distributed across multiple sites, or when each bubble in a collaboration is at a
different site.

Overlap between model type bubbles indicates dependencies between the mod-
els. For example, determining a system’s software architecture often requires
negotiation with the customer over the implications of requirements, and may
require an understanding of the fine-grained design of certain system functions. For
simplicity, the figure is drawn using a waterfall-type process model. Other process
models modify this picture. Spiral development would involve additional negotia-
tion around the importance of various types of risk, and what constitutes acceptable
levels of risk. An evolutionary prototyping model would add collaboration between
stakeholders and developers in the coding phase, representing the negotiation that
takes place after a demonstration of the evolving system prototype to the customer.

In the sections below, we provide an overview of the collaboration that takes
place during each project phase, and active areas of research within these phases.
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Fig. 1.1 Overview of model driven collaboration

1.3.1.1 Requirement Centered Collaboration

In the requirements phase, there are many existing commercial tools that sup-
port collaborative development of requirements, including Rational’s RequisitePro
[43] and DOORS [41] products, and Borland’s CaliberRM [8] (a more exhaus-
tive list can be found at [60]). These tools allow multiple engineers to describe
project use cases and requirements using natural language text, record dependen-
cies among and between requirements and use cases, and perform change impact
analyses. Integration with design and testing tools permits dependencies between
requirements, UML models, and test cases to be explicitly represented.

Collaboration features vary across tools. Within RequisitePro, requirements are
stored in a per-project requirements database, and can be edited via a Web-based
interface by editing a Word document that interacts with the database via a plu-
gin, or by direct entry using the RequisitePro user interface. Multiple engineers can
edit the requirements simultaneously via these interfaces. While cross-organization
interaction is possible via the Web-based interface, the tool is primarily designed
for within-organization use. RAVEN [79] supports collaboration via a built-in
checkout/checkin process on individual requirements. While most requirements
tools are desktop applications, Gatherspace [29] and eRequirements [29] are web-
based collaborative requirements tools, with capabilities only accessible via a Web
browser.

Research on collaborative requirements tools has focused on supporting nego-
tiation among stakeholders, use of new requirements engineering processes, and
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exploration of new media and platforms. Win-Win was designed to support a
requirements engineering process that made negotiation processes explicit in the
interface of the tool, with an underlying structure that encouraged resolution of con-
flicts, creating “win–win” conditions for involved stakeholders [5]. ART-SCENE
supports a requirements elicitation approach in which a potentially distributed team
writes use cases using a series of structured templates accessible via a Web-based
interface. These are then used to automatically generate scenarios that describe nor-
mal and alternative situations, which can then be evaluated by requirements analysts
[63]. Follow-on work has examined the use of a mobile, PDA-based interface for
ART-SCENE, taking advantage of the mobility of the interface to show use cases to
customer stakeholder in-situ [64]. The Software Cinema project examined the use
of video for recording dialog between engineers and stakeholders, allowing these
conversations to be recorded and analyzed in depth [17].

1.3.1.2 Architecture Centered Collaboration

Though the creation of final software architecture for a project is a collaborative
and political activity, much of this collaboration takes place outside architecture-
focused tools. Rational Software Architect is an UML modelling tool focused on
software architecture. Engineers can browse an existing component library and
work collaboratively on diagrams with other engineers, with collaboration mediated
via the configuration management system. Research systems, such as ArchStudio
[18, 95] and ACMEStudio [53] typically support collaborative authoring by ver-
sioning architecture description files, allowing a turn-taking authoring model. The
MolhadoArch system is more tightly integrated with an underlying fine-grain ver-
sion control system, and hence affords collaboration at the level of individual
model elements [73]. Supporting an explicitly web-based style of collaboration,
Maheshwari and Teoh [62], describes a web-based tool that supports the ATAM
architecture evaluation methodology.

1.3.1.3 Design Centered Collaboration

Today, due to the strong adoption of the Unified Modelling Language (UML),
mainstream software design tools are synonymous with UML editors, and include
Rational Rose [44], ArgoUML [78], Borland Together [9], and Altova UModel [2]
(a more complete list is at [102]). Collaboration features of UML authoring tools
mostly depend on the capabilities of the underlying software configuration manage-
ment system. For example, ArgoUML provides no built-in collaboration features,
instead relying on the user to subdivide their UML models into multiple files, which
are then individually managed by the SCM system. The Rosetta UML editor [32]
was the first to explore Web-based collaborative editing of UML diagrams, using a
Java applet diagram editor. Recently, Gliffy [30] and iDungu [45] have web-based
diagram editors that support UML diagrams. Gliffy uses linear versioning to record
document changes, and can inform other collaborators via email when a diagram has
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changed. SUMLOW supports same-time, same-place collaborative UML diagram
creation via a shared electronic whiteboard [16].

1.3.1.4 Collaboration Around Testing and Inspections

Like requirements, testing often involves substantial collaboration between an engi-
neering team and customers. Testing interactions vary substantially across projects
and organizations. Application software developers often make use of public beta
tests in which potential users gain advance access to software, and report bugs
back to the development team. As well, best practices for usability testing involves
multiple people performing specific tasks under observation, another form of test-
ing based collaboration. Adversarial interactions are also possible, as is the case
with a formal acceptance test, where the customer is actively looking for lack of
conformance to a requirements specification.

Within an engineering organization, testing typically involves collaboration
between a testing group and a development team. The key collaborative tool used to
manage the interface between testers (including public beta testers) and developers
is the bug tracking (or issue management) tool [90]. Long a staple of software devel-
opment projects, bug tracking tools permit the recording of an initial error report,
prioritization, addition of follow-on comments and error data, linking together sim-
ilar reports, and assignment to a developer who will repair the software. Once a bug
has been fixed, this can be recorded in the bug tracking system. Search facilities
permit a wide range of error reporting. A comparison of multiple issue tracking and
bug tracking systems can be found at [101].

Software inspections involve multiple engineers reviewing a specific software
artifact. As a result, software inspection tools have a long history of being collab-
orative. Hedberg [34] divides this history into early tools, distributed tools, asyn-
chronous tools, and web-based tools. Early tools (circa 1990) were designed to sup-
port engineers holding a face-to-face meeting, while distributed tools (1992–1993)
permitted remote engineers to participate in an inspection meeting. Asynchronous
tools (1994–1997) relaxed the requirement for the inspection participants to all meet
at the same time, and Web-based tools supported inspection processes on the Web
(1997–onwards). MacDonald and Miller [61] also survey software inspection sup-
port systems as of 1999. More recently, Meyer describes a distributed software
inspection process using only off-the-shelf communication technologies, includ-
ing voice over IP, Google Docs (web-based collaborative document authoring), and
Wiki. These technologies were found to be sufficient to conduct effective reviews;
no specialized review software was necessary [68].

1.3.1.5 Traceability and Consistency

While ensuring traceability from requirements to code and tests is not inherently
a collaborative activity, once a project has multiple engineers, creating traceability
links and ensuring their consistency is a major task. XLinkit performs automated
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consistency checks across a project [71], while [65] describes an approach for auto-
matically inferring documentation to source code links using information retrieval
techniques. Inconsistencies identified by these approaches can then form the start-
ing point for examining whether there are mismatches between the artifacts created
by different collaborators.

1.3.2 Process Centered Collaboration

Engineers working together to develop a large software project can benefit from
having a predefined structure for the sequence of steps to be performed, the roles
engineers must fulfill, and the artifacts that must be created. This predefined struc-
ture takes the form of a software process model, and serves to reduce the amount of
co-ordination required to initiate a project. By having the typical sequence of steps,
roles, and artifacts defined, engineers can more quickly tackle the project at hand,
rather than renegotiating the entire project structure. Over time, engineers within an
organization develop experience with a specific process structure. The net effect is
to reduce the amount of co-ordination work required within a project by regularizing
points of collaboration, as well as to increase predictability of future activity.

To the extent that software processes are predictable, software environments can
mediate the collaborative work within a project. Process centered software develop-
ment environments have facilities for writing software process models in a process
modelling language (see [74] for a retrospective on this literature), then executing
these models in the context of the environment. While a process model lies at the
core of process centered environments, this process guides the collaborative activity
of engineers working on other artifacts, and is not itself the focus of their collab-
oration. Hence, for example, the environment can manage the assignment of tasks
to engineers, monitor their completion, and automatically invoke appropriate tools.
A far-from-exhaustive list of such systems includes Arcadia [49], Oz [3], Marvel
[4], Conversation Builder [51], and Endeavors [7]. One challenge faced by such
systems is the need to handle exceptions to an ongoing process, an issue addressed
by [50].

1.3.3 Collaboration Awareness

Software configuration management systems are the primary technology co-
ordinating file-based collaboration among software engineers. The primary collab-
orative mechanism supported by SCM systems is the workspace. Typically each
developer has their own workspace, and uses a checkout, edit, checkin cycle to
modify a project artifact. Workspaces provide isolation from the work of other
developers, and hence while an artifact is checked out, no other engineer can
see its current state. Many SCM systems permit parallel work on artifacts, in
which multiple engineers edit the same artifact at the same time, using merge
tools to resolve inconsistencies [67]. Workspaces allow engineers to work more
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efficiently by reducing the co-ordination burden among engineers, and avoiding
turn-taking for editing artifacts. They raise several issues, however, including the
inability to know which developers are working on a specific artifact. Palantir
addresses this problem by providing engineers with workspace awareness, infor-
mation about the current activities of other engineers [85]. By increasing awareness
of the activities of other engineers, they are able to perform co-ordination activ-
ities sooner, and potentially avoid conflicts. Augur is another example of an
awareness tool [28]. It provides a visualization of several aspects of the devel-
opment history of a project, extracted from an SCM repository, thereby allowing
members of a distributed project to be more aware of ongoing and historical
activity.

1.3.4 Collaboration Infrastructure

Various infrastructure technologies make it possible for engineers to work collabo-
ratively. Software tool integration technologies make it possible for software tools
(and the engineers operating them) to co-ordinate their work. Major forms of tool
integration include data integration, ensuring that tools can exchange data, and con-
trol integration, ensuring that tools are aware of the activities of other tools, and can
take action based on that knowledge. For example, in the Marvel environment, once
an engineer finished editing their source code, it was stored in a central repository
(data integration), and then a compiler was automatically called by Marvel (control
integration) [4].

The Portable Common Tool Environment (PCTE) was developed from 1983
to 1989 to create a broad range of interoperability standards for tool integration
spanning data, control, and user interface integration [96]. Its greatest success was
in defining a data model and interface for data integration. The WebDAV effort
(1996–2006) aimed to give the Web open interfaces for writing content, thereby
affording data integration among software engineering tools, as well as a range of
other content authoring tools [24, 98]. Today, the data integration needs of software
environments are predominantly met by SCM systems managing files via isolated
workspaces. However, the world of data integration standards and SCM meet in
tools like Subversion [75] that use WebDAV as the data integration technology in
their implementation.

For control integration there are two main approaches, direct tool invocation,
and event notification services. In direct tool integration, a primary tool in an
environment (e.g., an integrated development environment, like Eclipse) directly
calls another tool to perform some work. When multiple tools need to be coordi-
nated, a message passing approach works better. In this case, tools exchange event
notification messages via some form of event transport. The Field environment
introduced the notion of a message bus (an event notification middleware service) in
development environments [81], with the Sienna system exemplifying more recent
work in this space [13].
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Ahmadi et al. suggest that future collaboration support for software projects
should build upon a foundation of technologies that can be used to create social
networking web sites, what they term Social Network Services [1].

1.3.5 Project Management

Software project management is intimately concerned with collaboration, since it
structures the effort of the project via the creation of teams, subdivision of work to
teams, schedules, and budget. These organizational, task, and cost structures drive
the co-ordination and collaboration needs of a project.

Software project management is a subdiscipline of project management, and
emerged as a separate concern within software engineering in the 1970s. During this
decade, organizations made increasing use of computer-based information technol-
ogy, leading to a demand for more, and larger software systems. The most influential
early project management book is Brook’s Mythical Man Month (1975) [10]. In
1981 Boehm defined the entire field of software economics in his landmark book
of the same name [6] introducing COCOMO, the Constructive Cost Model for
software. A January, 1984 edition of IEEE Trans. on Software Engineering [93]
portrayed the state of the practice in software project management, and looked into
its future. The year 1987 saw the release of DeMarco and Lister’s Peopleware:
Productive Projects and Teams, which emphasizes the importance of team collab-
oration [19]. A recent book in a similar vein was written in 1997 by McConnell,
who proposed a list of Ten Essentials for software projects, based on “hard-won
experience” [66].

The past 20 years have seen multiple efforts to capture and codify the knowl-
edge and key practices required to perform effective project management. Watts
Humphrey wrote Managing the Software Process in 1989, which first introduced
the capability maturity model (fully completed in 1993) [38]. This model is signifi-
cant for providing a multi-stage evolutionary roadmap by which an organization can
improve its ability to manage and construct software systems. The IEEE Software
Engineering Standards [47] capture many of the fundamental “best practices” of
the software engineering project management. The Project Management Book of
Knowledge (PMBOK), (1987, with four revisions since) documents and standard-
izes well-known project management knowledge and practices across a wide range
of project types, including software projects [76]. The second edition of Thayer’s
Software Engineering Project Management [92] provides a framework for project
management activities based on the planning, organizing, staffing, directing, and
controlling model. The ISO 10006 “Quality management – Guidelines to quality to
project management” [48], claims to provide “guidance on quality system elements,
concepts and practices for which the implementation is important to, and has an
impact on, the achievement of quality in project management”.

In 2005 Pyster and Thayer decided to revisit software project management and
assemble a set of articles that reflect how it has advanced over the past 20 years [77].
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1.4 Global and Multi-Site Collaboration

In today’s global economy, increasing numbers of software engineers are expected
to work in a distributed environment. For many organizations, globally-distributed
projects are rapidly becoming the norm [35]. Organizations construct global teams
so as to leverage highly skilled engineers and site-specific expertise, better address
the needs of users and other stakeholders, spread project knowledge throughout the
organization, exploit advantages of specific labor markets, accommodate workers
who wish to telecommute, and reduce costs. Mergers and alliances among organi-
zations also create the need for distributed projects. While providing many advan-
tages, global distribution also makes it harder for project members to collaborate
effectively.

Global teams find it much harder to develop shared understanding around
the evolving software artifact, as the distribution involved makes every aspect
of communication more difficult. Team members at different sites lose the abil-
ity to have ad-hoc, informal communication due to spontaneous face-to-face
interactions. Different sites often involve different national and organizational
cultures, creating what Holmstrom et al. call socio-cultural distance [36]. As
this distance increases, there is an increase in the challenge of interpreting the
meaning of project communication. Engineers spread across many time zones
reduce communication windows [33]. In reaction to these challenges, a core
set of developers tends to emerge that acts as the key liaisons, or gatekeepers,
between teams in different geographical locations. This team not only performs
key co-ordination activities, but also contains the most technically productive team
members [14].

Research on globally distributed software projects tends to focus on either char-
acterizing their behavior (e.g. [33, 36]), or developing tools and techniques to
mitigate the negative aspects of global distribution, so as to leverage its bene-
fits. An example of the latter is the global software development handbook, which
documents a wide range of issues and techniques for managing a global software
project [82]. Lanubile provides a recent overview of tools for communication and
co-ordination in distributed software projects [56]. In a hopeful sign that advanced
tool support can overcome some of the drawbacks of global distribution, Wolf
et al. report on a study of the development of the IBM’s Jazz project [103]. This
study shows that the Jazz team did not experience a significant decrease in project
communication due to the distance between project sites.

Herbsleb presents a thorough survey of research on distributed software engi-
neering in [35], along with thoughts on future research challenges. Herbsleb views
the main challenge of distributed software engineering as the management of
dependencies (that is, co-ordination) over a distance. We share this view, though
this chapter also emphasizes the challenges inherent in creating shared meaning
around (and identifying defects in) the many model-oriented artifacts in a software
project.
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1.5 Social Considerations

1.5.1 Software Teams

All engineering domains have a mix of technical and social aspects. For software
engineering, such technical aspects include: software processes used to organise the
life-cycle of software development; project management to co-ordinate teams work-
ing on software projects; requirements engineering, to capture key user needs of
software systems and to specify – formally and/or informally – these needs; design,
to identify the approaches via which the software systems will be realised; imple-
mentation, constructing executable systems; quality assurance, ensuring developed
systems meet user requirements to acceptable thresholds; and deployment, making
and keeping software systems available In addition, software very often must be
modified over time and “maintained”.

All of these technical activities must be carried out – in almost all cases – by a
team of software engineers and related personnel. Such a “software team” is respon-
sible for all of these technical aspects of engineering the software system and must
be formed, organized, managed, evolved and ultimately disbanded. Team forma-
tion may be top-down or bottom-up [12, 99]. Recently team formation has had to
take into account a trend to global software engineering including outsourcing, open
sourcing and virtual teams [82].

1.5.2 Team Organization

Teams may be organised in a variety of ways [99]. “Tayloristic” teams have spe-
cialists filling specific roles, such as a requirements team, design team, testing
team, coding team etc. These tend to be specialized, role-specific, task-focused and
top-down directed units. “Agile” teams adopt a very different approach [88]. In
these teams members tend to be generalists, the team people-focused rather than
task-focused, and management bottom-up. Each of these teams brings very dif-
ferent social interaction protocols to bear on software development. Traditional,
Tayloristic teams tend to be hierarchical and more centralized which suits some
development projects and personalities. Agile teams tend to be more customer-
driven, democratic and flexible. While this suits some developer personalities and
problem domains it can be problematic. Each style of team organizationteam orga-
nization tends to utilize different collaboration approaches, project management
strategies and sometimes tool support.

More recent trends have seen the rise of virtual software teams, outsourced soft-
ware and open source communities. From a social perspective virtual teams need to
overcome the challenges of distance, cultural and language differences and often dif-
ferent time zones [12]. Language barriers can mean it is difficult for team members
to exchange information, co-ordinate work and communicate without mediation.
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Cultural barriers can impact team dynamics in terms of co-ordination strategies,
timeliness of work, and task allocation and monitoring. Different time zones delay
communication sometimes leading to incorrect actions or incorrect assumptions
about software artefacts and processes.

Outsourcing usually requires strong contractual relationships between teams
[22]. Two common approaches are to divide an overall team into units of spe-
cialisation e.g. requirements, code, test etc., or to divide up the team vertically
according to software function, e.g., the payments team, the on-line transaction
processing team, the integration team. Collaboration challenges arise on the team
boundaries, within teams as per other co-located models as well as for overall
project management.

A very interesting set of social dynamics occur in the open source/voluntary
software arena [21]. Often effort is either donated or contributed out of a sense of
community belonging or mutual interest, in contrast to most other software develop-
ment endeavours. This can lead to issues of ownership, or lack thereof, co-ordination
challenges when available time of “team members” is unknown or opaque, and usu-
ally voluntary team membership for most or all members. Opt-in and opt-out to
particular parts of a development project or software can often occur.

1.5.3 Team Composition

Team composition has a strong bearing on the social dynamics of both a single team
and others its members may need to interact with. Some teams may be composed of
a set of specialists while others mainly generalists. Traditional approaches to soft-
ware team organisation often assume teams of specialists [99] and many outsourcing
and virtual team models have also adopted this approach [12, 22]. Specialisation has
advantages of clearer division of responsibility among members and ability to lever-
age particular skill bases. However it has major disadvantages when particular skills
are rare or become unavailable for a time; and can lead to team conflict around divi-
sions of work. Generalist teams are often favoured in agile projects [88] and are
often a characteristic of many open source “teams” [21] by virtue of opt-in/opt-out
driven by particular areas of interest or need.

Some teams include end users, or “customers”, of the software product as a mat-
ter of course [88] whereas others isolate many team members from these customers
[99]. Each has advantages and disadvantages in terms of collaboration support and
project co-ordination from a social perspective. Customers generally have a very
different perspective on the software project to developers and co-location greatly
enhances communication and collaboration. However customers are often driven by
self-interest and localised perspectives which may result in limited communication
in particular areas.

Team membership can be whole-of-project, short-lived, or periodic. Some teams
are created for the lifetime of a project in order to ensure available skill base and
to enable deep understanding not only of the project but other team member’s
skills, abilities and awareness of work. Outsourced projects will typically leverage
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a remote team for the lifetime of the outsourced activity. Traditional teams may be
sensitive to particular skill loss and agile teams try to mitigate this by a stronger
emphasis on generalists [88].

Many teams are shared across projects. This is particularly common in virtual and
out-sourced domains where specialised teams may be working on several projects at
once. This greatly complicates inter-team communication and collaboration. Open
source projects are often characterised by some team members participating for
the whole duration of a project; some leaving early or joining later; and some
participating on and off as their interest and time allows. Sometimes a team or
members of a team may be contributing simultaneously to software development
in different organisations. Again, virtual teams and particularly open source and
outsourced projects may show this characteristic. These situations make building up
a “corporate memory” around software a real challenge.

1.5.4 Knowledge Sharing

Knowledge sharing in software development has always been a challenge. The trend
to global software engineering – common in virtual teams, outsourcing projects
and open source projects – exacerbates this. Working in different time zones means
that co-ordination of activities will typically be coarser-grained than possible with
co-located teams.

Information may be written in different languages or from very different per-
spectives. Different emphases may be put on information depending on the cultural
background of team members. Approaches to managerial aspects of teams, task
division and reporting may need to take careful account and respect of cultural dif-
ferences to ensure team harmony and effectiveness [55]. Language difference is
probably the most obvious – and most challenging – issue when sharing knowl-
edge across teams. However, cultural differences and the impact of different time
zones and lack of face-to-face collaboration and co-ordination can also be significant
issues [35, 55].

It is common to encounter significant differences in work culture, habits,
approach to management and self-organization in cross-cultural teams. Again,
open source projects, outsourcing projects and distributed software teams com-
monly exhibit the need to manage software engineering knowledge in cross-cultural,
cross-language and cross-time zone environments.

1.6 Managerial Considerations

Software project management (SPM) includes the knowledge, techniques, and tools
necessary to manage the development of software products. In more detail, SPM
includes the inception, estimation, and planning of software projects along with
tracking, controlling, and co-ordinating the execution of the software project. The
goal of SPM is to tackle an optimal balance between planning and execution.
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1.6.1 Software Project Management

The Project Management Institute defines project management as “the application
of knowledge, skills, tools, and techniques to project activities in order to meet or
exceed stakeholder’s needs and expectations from a project” [76].

The intent of project management is to drive a project forward through a series
of periods, phases and stages tailored to the specific project and its particular
development and implementation strategy. These time intervals should be reflec-
tive of the product and its environment. Driving a project forward means steering
it through these intervals separated by “gates” as a means of ensuring control and
continued support by all of the partners involved [100].

Software engineering management can be defined as application of management
activities – planning, co-ordinating, measuring, monitoring, controlling, and report-
ing – to ensure that the development and maintenance of software is systematic,
disciplined, and quantified [46].

The key issue in Software Project Management (SPM) is decision making. Many
of the decisions that drive software engineering are about how the software engi-
neering process should take place, not just what software supposed to do or how it
will do it, i.e., the project management has to be viewed in relation with product
development and engineering processes.

1.6.2 SPM for Collaborative Software Engineering

There are four management areas that are particularly important in collaborative
software engineering: (1) supporting communications in the project; (2) recon-
ciling different stakeholder’s viewpoints; (3) improving the process; (4) rapidly
constructing the knowledge [25].

1.6.2.1 Supporting Communications in the Project

It is known that large organizations are associated with large communication
overhead [6, 10, 54, 86]. For example, it is typical for an engineer in mid to
large organizations to spend between half and three quarters of their time on
communication, leaving only a fraction of their time for engineering work [86].

While the cost of communication has been noted for a long time, it is becom-
ing increasingly worse. Communication overhead has a broad number of causes:
number of counterparts; differences in backgrounds, notations, and conventions;
effectiveness of communication tools; distribution of organizations. In general, the
worse the communication overhead associated with the transmission of information,
the less effective and responsive an organization becomes.

1.6.2.2 To Reconcile Conflicting Success Criteria in the Project

One of the problems in software development is to elicit and satisfy the success crite-
ria of multiple stakeholders. Users, clients, developers, and maintainers are involved
in different aspects of the development and operating of the software system, and
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have different and conflicting views on the system [26]. The role of the project
manager is to elicit, negotiate, satisfy, and trade-off multiple criteria originating
from the key stakeholders so that each stakeholder “wins” to ensure the success and
sustainability of the product.

Often, the issue of dealing with conflicting success criteria is not only to rec-
oncile conflicting views, but to identify the key stakeholders of the system and to
clarify their success criteria. Once these criteria are known to all, it is much easier
to identify conflicts and to resolve them by negotiating compromise alternatives.

To address these issues, there is a need for negotiation techniques and support
early in system development, while changes in requirements and technology are
possible and cost effective.

1.6.2.3 Improving the Process in the Project

Software engineering literature has provided many models, called life cycle models,
of how software development occurs. In practice, software engineering tends to fol-
low a more complex pattern, similar to problem solving in other human activities,
which creative, opportunistic, involving, incremental building is followed by radi-
cal reorganizations sparked by sudden insights [72]. Moreover, the occurrence and
frequency of the radical reorganization depend on the organization and the project
context.

The field of software process improvements has gained ground in recent years, in
supporting managers and organization in modelling and measuring software devel-
opment processes. While software process improvement practices lead to more
repeatable and more predictable processes, they usually do not deal with creative
processes such as requirements engineering and do not support managers in dealing
with radical reorganizations.

1.6.2.4 Rapidly Construct the Knowledge in the Project

A knowledge management approach should focus on the informal communi-
cation helping navigate and update digital repositories and digital repositories
helping to identify key experts and stakeholders. Such a knowledge management
approach would also enable stakeholders to create, organize, and capture infor-
mal or formal knowledge, in real time. This approach is called rapid knowledge
construction [89].

Rapid knowledge construction is often needed when common knowledge needs
to be elicited and merged from a number of groups, possibly distributed in the
organization. Rapid knowledge construction includes the following challenges:
adaptable to context; real-time capture; enable reuse.

Knowledge management and rapid knowledge construction are not manage-
ment activities in the traditional sense (organizing work and resources). However,
knowledge management is essentially cross-functional, and hence, requires the
participation and facilitation of many levels, including project and program
management.
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1.7 Future Trends

As our understanding of software engineering collaboration deepens and the range
of easily adoptable collaboration technologies expands, opportunities are created for
improving collaborative project work. This section outlines several future trends in
software collaboration research.

1.7.1 IDEs Shift to the Web

One clear trend in collaboration tools is the existence of web-based tools in every
phase of software development. This mirrors the broader trend of many applications
moving to the web, afforded by the greater interactivity of AJAX (asynchronous
JavaScript and XML), more uniformity in JavaScript capabilities across browsers,
and increasing processing power in the browser. Web-based applications have the
benefit of centralized tool administration, and straightforward deployment of new
system capabilities. They also make it possible to collect highly detailed usage met-
rics, allowing rapid identification and repair of observed problems. Web application
variants can also be evaluated quickly by giving a small percentage of the users a
slightly modified version, then comparing results with the baseline. The advantages
of web-based applications are compelling, and create substantial motivation to move
capability off of desktops and into the web.

Traditionally, the most significant drawback to web-based applications has been
the lack of user interface interactivity, and so graphics or editing intensive applica-
tions were traditionally not viewed as being suitable for the web. In the realm of
software engineering, this meant that UML diagram editing and source code editing
were relegated to desktop only applications. Google Maps smashed the low inter-
activity stereotype in early 2005, and is now viewed as the vanguard of the loosely
defined “Web 2.0” movement that began in 2004. Web 2.0 applications tend to have
desktop-like user interface interactivity within a web browser, as well as facilities
for other sites to integrate their data into the application, or integrate the site’s data
into another application.

The pathway is now clear for the creation of a completely web-based integrated
development environment. The Bespin code editor supports highly interactive,
feature-rich source code editing within a browser [70], with direct back-end integra-
tion with source code management systems. Due to the high degree of interactivity
required, source code editing is the most thorny problem of moving to a totally web-
based environment. Bespin demonstrates that completely web-based code editing is
possible. With the source code editor in place, editors for other models in the soft-
ware engineering lifecycle can be integrated. For example, the Gliffy drawing tool
supports browser-based UML diagram editing [30]. Web-based requirements and
bug tracking tools can also be tied in, along with web-based word processing and
spreadsheets, such as Google Docs [31], Zoho Writer [104], and the Glide suite
[94]. Web-based project build technologies such as Hudson [37] make it possible to
remotely build and unit test software, removing the last threads that bind software
development to the desktop.
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The technical hurdle of bolting together multiple existing web-based tools into
a single environment should be straightforward to overcome. What comes next are
the fundamental research questions. To achieve close integration among tools, some
form of data integration will be necessary. This then leads to the hard problem of
developing data interchange standards among pluggable tools in various parts of the
development lifecycle.

The ability to gather finely detailed information about the work practices
of software engineers can allow rapid tuning and improvement of web-based
environments. It also opens the possibility of a flowering of research in empirical
software engineering, as large amounts of software project activity data are gath-
ered across many open source software projects. This, in turn, raises the issue of
just what degree of project monitoring is acceptable to developers, and who should
have access to collected data.

A web-based environment opens the possibility for integration with other web-
based collaboration technologies, such as social networking sites. This leads to our
next future direction.

1.7.2 Social Networking

Social networking sites such as MySpace, Facebook, and LinkedIn have, in the
space of a few short years, emerged as major hubs of social interaction. By pro-
viding awareness of the actions of friends and the ability to build closer social ties,
these sites act as a kind of social glue, knitting together communities. These sites
are also becoming major software development platforms, leading to the rapid rise
of social gaming companies such as Zynga and Playdom.

It is an open question how best to integrate social networking sites into soft-
ware development teams. The simplest approach is to have all team members use a
single social networking site, and use it for non-project oriented socializing. Sites
like Advogato [58] and Github [59] provide developer profiles. Advogato provides
the ability for developers to rate each others’ technical proficiency, creating a trust
network. Each user also has a weblog. Github provides automated status update
messages shown on a developer’s profile page based on activity in Github managed
software projects, and project-specific news feeds.

At present, sites like Advogato and Github only have affordances for the iden-
tity of each participant as a software engineer. This can be contrasted with sites like
Facebook and MySpace, where a broader range of tools make possible the integra-
tion and presentation of multiple identities for each participant, though with a bias
towards non-work identities. LinkedIn is another choice, clearly focused on busi-
ness networking and job seeking. Clearly there is a potential for tight integration
of software development activities with social networking sites. But how? One pos-
sibility is integration with Facebook. However, it seems a bit counter to the site’s
focus to have successful build and code checkin messages appearing in someone’s
wall. On the other hand, since sites like Github and Advogato have fewer social
affordances, they feel less interesting than Facebook. Even for the most hardcore
developers, there is more to life than code alone.
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1.7.3 Broader Participation in Design

Many forms of software have high costs for acquiring and learning the software,
leading to lock-in for its users. This is especially true for enterprise software
applications, where there can be substantial customization of the software for each
location. This leads to customer organizations having a need to deeply understand
product architecture and design, and to have some influence over specific aspects
of software evolution to accommodate their evolving needs. In current practice,
customers are consulted about requirements needs, which are then integrated into
a final set of requirements that drive the development of the next version of the
software. Customers are also usually participants in the testing process via the
preliminary use and examination of various beta releases. In the current model, cus-
tomers are engaged during requirements elicitation, but then become disengaged for
the requirements analysis, design, and coding phases, only to reconnect again for the
final phase of testing. This can be seen in Fig. 1.1 (earlier in this chapter), where the
stakeholders/users/customers row has engagement in requirements, and then again
in test.

Broadened participation by customers in the requirements, design, coding and
early testing phases would keep customers engaged during these middle stages,
allowing them to more actively ensure their direct needs are met. While open
source software development can be viewed as an extreme of what is being sug-
gested here, in many contexts broadening participation need not mean going all the
way to open source. Development organizations can have proprietary closed-source
models in which they still have substantial fine-grain engagement with customers
in which customers are directly engaged in the requirements, design, coding, and
testing process. Additionally, broadening participation does not necessarily mean
that customers would be given access to all source code, or input on all decisions.
Nevertheless, by increasing the participation of the direct end users of software
in its development, software engineers can reduce the risk that the final software
does not meet the needs of customer organizations. As in open source software, a
more broadly participative model can allow customers to fix those bugs that mostly
directly affect them, even if, from a global perspective, they are of low priority, and
hence unlikely to be fixed in traditional development. A participatory development
model could also permits customers to add new features, thereby better tailoring the
software to their needs.

A completely web-based software development environment would make it eas-
ier to broaden participation. In such an environment, it would be possible to give out-
siders direct access to limited parts of the source code (and other project artifacts).
With direct web-based access, external sites would not need to take source code off-
site in order to build and test it, reducing the risk of proprietary information release.

1.7.4 Capturing Rationale Argumentation

An important part of a software project’s documentation is a record of the ratio-
nale behind major decisions concerning its architecture and design. As new team
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members join a project over its multi-year evolution, an understanding of project
rationale makes it less likely that design assumptions and choices will be acci-
dentally violated. This, in turn, should result in less code decay. A recent study
[91] shows that engineers recognize the utility of documenting design rationale,
but that better tool support is needed to capture design choices and the reasons for
making them.

Technical design choices are often portrayed as being the outcome of a rational
decision making process in which an engineer carefully teases out the variables of
interest, gathers information, and then makes a reasoned tradeoff. What this model
does not reflect is the potential for disagreement among many experienced software
engineers on how to assess the importance of factors affecting a given design. One
of the strongest design criteria used in software engineering is design for change,
which inherently involves making predictions about the future. Clearly we do not yet
have a perfect crystal ball for peering into the future, and hence experienced engi-
neers naturally have differing opinions on which changes are likely to occur, and
how to accommodate them. As well, architectural choices often involve decisions
concerning which technical platform to choose (e.g., J2EE, Ruby on Rails, PHP,
etc.), requiring assessments about their present and future qualities. As a result, the
design process is not just an engineer making rational decisions from a set of facts,
but instead is a predictive process in which multiple engineers argue over current
facts and future potentials. Architecture and design are argumentative processes in
which engineers resolve differences of prediction and interpretation to develop mod-
els of the software system’s structure. Since only one vision of a system’s structure
will prevail, the process of architecture and design is simultaneously cooperative
and competitive.

Effective recording of a project’s rationale requires capturing the argumentation
structure used by engineers in their debates concerning the final system structure.
Outside of software engineering, there is growing interest in visual languages and
software systems that model the structure of arguments [52]. While models vary,
argumentation support systems generally record the question or point that is being
contested (argued about), statements that support or contest the main point, as well
as evidence that substantiates a particular statement. Argumentation structures are
generally hierarchical, permitting pro and con arguments to be made about indi-
vidual supporting statements under the main point. For example, a “con” argument
concerning the use of solar panels as the energy source for a project might state
that solar electric power is currently not competitive with existing coal-fired power
plants. A counter to that argument might state that while this is true of wholesale
costs, solar energy is competitive with peak retail electric costs in many markets.

Providing collaborative tools to support software engineers in the recording and
visualization of architecture and design argumentation structures would do a bet-
ter job of capturing the nuances and tradeoffs involved in creating large systems.
They would also better convey the assumptions that went into a particular decision,
making it easier for succeeding engineers to know when they can safely change a
system’s design. A persistent challenge in rationale management in software engi-
neering is keeping arguments consistently linked with the artifacts the affect (a form
of traceability management). A completely web-based development environment,
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by providing centralized control over development artifacts, can ease this problem
by making it possible to reliably perform link fix-up actions when an argument, or
linked artifact, are changed.

1.7.5 Using 3D Virtual Worlds

Software engineers have a long track record of integrating new communication
technologies into their development processes. Email, instant messaging, and web-
based applications are very commonly used in today’s projects to coordinate work
and be aware of whether other developers are currently active (present). As a
result, engineers would be expected to adopt emerging communication and presence
technologies if they offer advantages over current tools.

Networked collaborative 3D game worlds are one such emerging technology.
The past few years have witnessed the emergence of massively-multiplayer online
(MMO) games, the most popular being World of Warcraft (WoW). These games
support thousands of simultaneous players who interact in a shared virtual world.
Each player controls an avatar, a graphic representation of the player in the world.
Communication features supported by games include instant messaging, voice
chat, email-like message services, and presence information (seeing another active
player’s avatar).

Steve Dossick’s PhD dissertation [23] describes early work on the use of 3D
game environments to create a “Software Immersion Environment” in which project
artifacts are arranged in a physical 3D space, a form of virtual memory palace.
Only recently have MMOs like Second Life emerged that are not explicitly role-
playing game worlds, and hence are framed in a way that makes them potentially
usable for professional work. While Second Life’s focus on leisure activities makes
it unpalatable for all but the most adventurous of early adopters, these environ-
ments still hint at their potential for engineering collaboration. IBM’s Bluegrass
project [40] is a 3D virtual world explicitly designed to support software project
work. Goals of the work include improved awareness of the current status and
ongoing work of a project, and project brainstorming. The work exposes many
research issues in use of 3D virtual worlds for software project collaboration.
Representation of software artifacts in the 3D world is a thorny problem, as there
is no canonical way of spatially representing software. One possibility is to have
the virtual space represent the organization of the various software project arti-
facts including requirements, designs, code, test cases, and so on. Alternately, the
virtual space could be a form of idealized work environment, where everyone
has a nice, large office with window. Combinations of the two are also possible,
given the lack of real-world constraints. Virtual worlds typically have avatars that
walk about in the world, a slower way of navigating project artifacts than a tradi-
tional directory hierarchy. The explicit representation of a developer avatar raises
issues of appropriate representation of identity in the virtual space, an issue not
nearly so prevalent in email, instant messaging, and other text-based communication
technologies.
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The utility of adopting a 3D virtual world needs careful examination, as the bene-
fits of the technology need to clearly exceed the costs. It is currently unclear whether
this is true.

1.8 Fundamental Tensions

Underneath many of the situations present and advances made in collaborative soft-
ware engineering lie fundamental tensions that must be acknowledged. Optimizing
towards one aspect of collaboration support often involves tradeoffs with respect to
other aspects [84]. It is currently an open question as to where the theoretically opti-
mal level of support lies for a given situation, a state some have labeled congruence
[15]. Below, we identify some of the key tensions that exist.

What is good for the group may not be good for the individual. For an organi-
zation to effectively operate, certain individuals may be required to perform work
that is not optimal from their personal perspective. Ultimately, of course, collabora-
tive work must be optimized from an organization’s perspective. However, if such
optimization goes at the expense of the individuals, it is unlikely that a productive
process is achieved. Some kind of balance must be found in which individuals’ sat-
isfaction with their work is respected, yet at the same time organizational needs
are met. An example of when both can be achieved in parallel lies in the use of
awareness technologies with configuration management workspaces [20, 83], where
individuals are spared the merge problem, and organizations benefit from a higher
quality code base.

What is good in the long term may not be good right now. Ultimately, the goal
is to optimize the collaborative process as it plays out over time. This means that,
at times, work performed right now is suboptimal in the short term, but crucial to
later efficiencies. For instance, it is well-known that it is important to leave suffi-
cient information along with the artifacts produced for later re-interpretation and
re-consideration. However, such documentation is not always produced because it
is seen as superfluous work, and even when it is produced, keeping it in sync with
an ever-evolving code base is a tedious and arduous job.

Co-ordination needs are highly dynamic, but processes and tools in use tend to
be largely static. Because of the ever changing nature of software and its under-
lying requirements, exactly what co-ordination needs exist that give rise to actual
collaborations fluctuate [15]. But the processes and tools in use tend to be static in
nature, chosen once at the beginning of the project and rarely adjusted after. Some
tools have recognized this and provide different modes of collaboration e.g. [87],
but in general serious mismatches can emerge between co-ordination needs and
affordances.

Tools can, and should, only automate or support so much of collaborative prac-
tice. Ultimately, tools formalize and standardize work. Developers rely on tools
every day, but it has been observed that they also establish informal practices sur-
rounding the formally supported processes [80]. These informal practices are a
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crucial part of any effective development project. The tension, then, is how much
to automate of the “standard” practices and how much to leave in the developers
hands to enable them to own part of the process and flexibly be able to perform their
work.

Sharing is good, but too much sharing is not. Much work must be performed in
isolated workspaces of sorts to protect ongoing efforts from other ongoing efforts.
The canonical example is each developer making their own changes in their own
workspace, so they can test their changes in isolation and without interference by
changes from other developers that may still be partial in nature. To overcome the
issue of insulation becoming isolation, information about work must be shared with
others. Such sharing can be beneficial, but must be carefully weighted with the fact
that too much sharing leads to information overload, causing developers to ignore
the information brought to them. Once again, a balance must be struck.

Record keeping is good, but it could be misused. The canonical example is the
manager judging performance via lines of code contributed to a code base; this is
a fundamentally flawed metric. With a broad set of new collaborative tools relying
on and visualizing key data regarding individuals’ practices, choices, and results,
misuse of such data could lead to serious problems.

The above represents some of the key considerations that must be kept in mind
when one attempts to interpret collaborative software engineering or provide novel
solutions. In this book, we will see these tensions come back repeatedly, some-
times explicitly recognized as such, at other times providing implicit motivations
and design constraints. These tensions will persist for the time and ages, and always
govern how we approach collaboration.

1.9 Conclusions

After 35 years of research and tool making to foster collaboration in software engi-
neering, we now have useful collections of tools, work practises, and understandings
to guide multi-person software development activity. Indeed, internet-based collab-
oration tools and practices directly led to the creation of a globally distributed, open
source software ecosystem over the past 20 years, accelerating in the last 10. Clearly,
progress has been made in supporting collaborative software development.

Despite this progress, our understanding of collaboration in software engineering
is still imperfect, and there is room for improvement in many arenas. A fundamental
stumbling block is the lack of established metrics for quantitatively assessing col-
laboration in software projects. This, in turn, makes it challenging to know when a
new collaboration tool has made an improvement, or when a new tool will make a
difference. For example, it was only in hindsight that SourceForge (and similar web-
based “forge” systems) was viewed as a major advance in software collaboration
infrastructure, and not simply the integration of several pre-existing tools.

There are many current challenges in collaborative software engineering
research. These include:
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• Understanding how to adapt new communications media for collaboration. The
computer is a rich nursery for new types of media. Social networking sites and
3D virtual worlds are two kinds of computational media that show potential for
improving software project collaboration.

• Reducing the effects of distance on remote collaboration. Adding distance
between people makes it harder to collaborate – is it possible to remove the
negative effects of distance with superior tool support?

• Improve shared understanding of artifacts. Much work in software projects sur-
rounds the removal of ambiguity in natural language and semi-formal artifacts.
Improved collaboration support could assist this process of identifying ambigu-
ity and developing shared understanding. Additionally, there is still room for
improvement in the ways developers become aware of the work being performed
by others.

• Improved techniques for leveraging the expertise of others. A persistent challenge
in software engineering collaboration is identifying people within an organization
that have expertise relevant to a current problem or task [27].

• Improved ways of finding and removing errors. Improving the collaboration
between and among users and developers in identifying and fixing errors could
help reduce software bugs, and improve the experience of using software.

• Better understanding of how to motivate people to work together effectively. As
is mentioned in the previous section, there is a tension between individual and
group goals. Providing sufficient rewards to encourage project collaboration is
important, and not well understood.

• Improve and integrate software project management, software product devel-
opment, and software engineering processes. This goal is often hampered by a
great variety of methods and tools in the individual disciplines and limited inte-
gration methodologies between project management, product development, and
engineering processes. An effective collaborative environment must inject basic
elements of project management, including activity awareness, task allocation,
and risk management, directly into the software engineering process.

The chapters in this volume address these issues, and more. In so doing, they
deepen our understanding of collaboration in software engineering, and highlight
the potential for new tools, and new ways of working together to create software
projects, large and small.
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Part I
Characterizing Collaborative

Software Engineering

Ivan Mistrík

Effective collaboration in software engineering is very important and yet increas-
ingly complicated by trends that increase complexity of dependencies between
software development teams and organizations [2]. These trends include the global-
ization of software engineering, leveraging the relationships between requirements
and people, the adoption of software product lines, practices in agile software
development, and applications of ontologies.

Software engineering collaboration has multiple goals and means spanning the
entire lifecycle of development [7]:

Establish the scope and capabilities of a project. Engineers must work with the
users and funding sources (stakeholders) of a software project to describe what it
should do at both a high level, and at the level of detailed requirements. The form of
this collaboration can have profound impact on a project, ranging from the up-front
negotiation of the waterfall model, to the iterative style of evolutionary prototyping
[5].

Drive convergence towards a final architecture and design. System architects
and designers must negotiate, create alliances, and engage domain experts to ensure
convergence on single system architecture and design [3].

Manage dependencies among activities, artifacts, and organizations [4]. This
encompasses a wide range of collaborative activities, including typical management
tasks of subdividing work into tasks, ordering them, then monitoring, assessing, and
controlling the plan of activities. Modularization decisions also affect dependencies.

Reduce dependencies among engineers. An important mechanism for managing
dependencies is to reduce them where possible, thereby reducing the need for col-
laboration. Modularization decisions frequently follow organizational boundaries
[6] a mechanism for reducing cross-organization co-ordination. Software configura-
tion management systems permit developers to work in per-developer workspaces,
thereby isolating their changes from others, and reducing the number of change
dependencies among developers. With workspaces, developers no longer need to
wait for all developers to finish their current changes before compiling.

Identify, record and resolve errors. Errors and ambiguities are possible in all soft-
ware artifacts, and many approaches have been developed to find and record their
existence. Among the collaborative techniques are inspections and reviews, where
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many people are brought together so that their multiple perspectives can identify
errors, and their questions can surface ambiguities. Testing, where one group cre-
ates tests to uncover errors in software developed by others is another collaborative
error finding technique. Users of software also collaborate in the identification of
errors, whether in explicit beta testing programs, or through normal use, when they
submit bug reports. Bug tracking (issue management) systems permit engineers to
record problems, as well as manage the process of resolving them.

Record organizational memory. In any long running collaborative project, people
may join and leave. Part of the work of collaboration is recording what people know,
so that project participants can learn this knowledge now, and in the future [1]. SCM
change logs are one form of organizational memory in software projects, as are
project repositories of documentation. Process models also record organizational
memory, describing best practices for how to develop software.

Chapters in this part of the book are reporting on advances on some issues
mentioned above.

Chapter 2 “Global Software Engineering: A Software Process Approach” by
Ita Richardson, Valentine Casey, John Burton and Fergal McCaffery thesis is that
global software engineering factors should be included in software process models
to ensure their continued usefulness in global organizations. They have devel-
oped a software process, Global Teaming, which includes specific practices and
sub-practices. The purpose is to ensure that requirements for successful global
software engineering are stipulated so that organizations can ensure successful
implementation of global software engineering.

Chapter 3 “Requirements-Driven Collaboration: Leveraging the Invisible Re-
lationships between Requirements and People” by Daniela Damian, Irwin Kwan
and Sabrina Marczak discusses an approach to study requirements-driven collab-
oration, which is the collaboration during the development and management of
requirements. The approach uses the construct of a requirement-centric social net-
work to represent the membership and relationships among members working on
a requirement and its associated downstream artifacts and a number of social net-
work analysis techniques to study collaboration aspects such as communication,
awareness, and the alignment of technical dependencies driven by development of
requirements and social interactions. To demonstrate their approach, the authors
describe insights from a case study that examines requirements-driven collaboration
within an industrial, globally-distributed software team.

Chapter 4 “Softwares Product Lines, Global Development and Ecosystems:
Collaboration in Software Engineering” by Jan Bosch and Petra Bosch-Sijtsema
discusses problems of ineffective collaboration and success-factors of five
approaches to collaboration in large-scale software engineering. The approaches,
i.e., integration-oriented software engineering, release groupings, release trains,
independent deployment and open ecosystems, increasingly facilitate composition-
ality of the system parts.

Chapter 5 “Collaboration, Communication and Co-ordination in Agile Software
Development Practice” by Hugh Robinson and Helen Sharp explores in detail, the
nature of collaboration, communication and co-ordination involved in agile software
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development. It focuses specifically on the collaborative activities of pairing and
customer collaboration, and the co-ordinating role of two key physical artifacts: the
story card and the Wall. The research explicates how this social activity is related to
and embodied in the associated technical practice of developing working code.

Chapter 6 “Applications of Ontologies in Collaborative Software Development”
by Hans-Jörg Happel, Walid Maalej and Stefan Seedorf discusses the application of
ontologies to CSD. Ontologies, which are models that capture a shared understand-
ing of a specific domain, provide key benefits which address several CSD issues. The
chapter contains a comprehensive set of application scenarios for ontologies in CSD.
In addition, the authors describe Semantic Wikis, Semantic Integrated Development
Environments (IDEs) and a Software Engineering Semantic Web as technological
backbones.
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Chapter 2
Global Software Engineering: A Software
Process Approach

Ita Richardson, Valentine Casey, John Burton, and Fergal McCaffery

Abstract Our research has shown that many companies are struggling with the suc-
cessful implementation of global software engineering, due to temporal, cultural and
geographical distance, which causes a range of factors to come into play. For exam-
ple, cultural, project management and communication difficulties continually cause
problems for software engineers and project managers. While the implementation of
efficient software processes can be used to improve the quality of the software prod-
uct, published software process models do not cater explicitly for the recent growth
in global software engineering. Our thesis is that global software engineering factors
should be included in software process models to ensure their continued usefulness
in global organisations. Based on extensive global software engineering research,
we have developed a software process, Global Teaming, which includes specific
practices and sub-practices. The purpose is to ensure that requirements for suc-
cessful global software engineering are stipulated so that organisations can ensure
successful implementation of global software engineering.

2.1 Introduction

In today’s global economy, increasing numbers of software engineers are
expected to operate in a distributed environment [32]. In this environment, geo-
graphical distance introduces physical separation between team members and
management [6], temporal distance hinders and limits opportunities for direct
contact and cooperation [1], and cultural distance negatively impacts on the
level of understanding and appreciation of the activities and efforts of remote
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colleagues and teams [52]. Therefore, Global Software Engineering (GSE)1 has
complexities over and above those experienced in local software development [7,
22, 31]. While process models such as Capability Maturity Model Integration
(CMMI R©) [19] and IEC/ISO15504 (International Standards [45] operate success-
fully in local environments, they do not explicitly provide for the impact of these
complexities.

In this chapter, we discuss our research into virtual teams. This has demonstrated
that project management must change in the global development environment.
Therefore, we developed a project management process area, Global Teaming (GT),
which details specific practices for use when organisations are implementing GSE.

2.2 Software Process

Humphrey [34] defines a software process as “the set of tools, methods and prac-
tices we use to produce a software product”. Paulk et al. [48] expand this definition
to “a set of activities, methods, practices and transformations that people use to
develop and maintain software and the associated products”. Organisations improve
their software processes to improve the quality of their product. While there have
been arguments that implementing planned processes decrease rather than increase
the efficiency of the software development process [26, 37, 39] there is also evi-
dence that there have been increases in productivity and efficiency due to the
implementation of planned processes [3, 5, 27, 35, 56]. While we recognise that
there are many valid reasons for not implementing planned process models such
as CMMI R© and ISO/IEC 15504, we also recognise that there are efficiencies to
be gained in doing so, and, in particular, there are markets which require planned
processes to be in place. For example, in industries such as the Medical Device
industry, who are regulated by the Food and Drugs Administration (FDA), and the
Automotive industry, who follow Automotive SPICE, planned processes are still
required.

2.3 Research Project

The authors completed a study which identified 25 factors to be taken into account
when setting up virtual teams in a global environment. Based on this outcome,
we developed a software process area, Global Teaming, similar to the structure of
CMMI. This can be used as a supporting mechanism for the implementation of GSE.

1A variety of terms exist: Distributed Software Development, (DSD), Global Software
Development (GSD), or Global Software Engineering (GSE). We will use the term GSE this
chapter.
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2.3.1 Case Studies into GSE

Three case studies were undertaken over a 9 year period in the area into GSE. The
first case study was carried out in an Irish company who implemented a strategy
to expand their organization’s market share by the establishment of local offsite
virtual software development teams (Irish Computing Solutions2). Prior to imple-
menting this policy the company operated collocated teams based in the capital
(Dublin) who worked exclusively on the development of financial and telecommu-
nications software. The organization also had a software development centre located
150 miles from Dublin, which was involved in general application development and
maintenance and had lower labour costs. The objective was to leverage staff at both
locations and capitalize on the cost advantage offered. A group of twelve offsite
engineers were selected and were provided with basic training in the required tech-
nology and process. Two virtual teams were established and consisted of two sets of
six offsite engineers who were partnered with three experienced onsite engineers
based in Dublin. Considerable effort was put into providing the communication
infrastructure, process and support for both virtual teams. A key objective of this
approach was that the onsite engineers would mentor the inexperienced offsite staff
and provide effective knowledge transfer [17].

The second case focused on offshore/nearshore software development [28],
where we studied a partnership between a large U.S. based financial organization,
Stock Exchange Trading Inc., and an Irish division of a U.S. multinational company
Software Future Technologies. While the U.S. and Irish based sites were geograph-
ically distant, they were considered linguistically and culturally nearshore [28, 53].
The companies established virtual teams to develop and maintain bespoke financial
software. Stock Exchange Trading Inc. was the senior partner in this relationship
and had an on-going requirement for development and maintenance. An unantic-
ipated and urgent requirement arose for the development of new software during
the initial stage of establishing the virtual teams. To address this need 70% of the
Irish team members moved to the U.S., for a period of 1 year to work on collo-
cated teams with their Stock Exchange Trading colleagues. This proved to be a
very effective strategy and both groups operated very successfully while collocated
within what were to eventually become their virtual teams. It was only when the
Irish team members returned to Ireland and the virtual teams were established that
serious problems arose. [10, 11, 17].

The third case study centred on offshore virtual team software testing and was
undertaken in the Irish division of a large U.S. multinational, Computing World
International, who had been operating in Ireland for over 20 years. This division
had been very successful and had expanded considerably in that time, during which
a large percentage of the projects undertaken had been offshored from their U.S.
parent. Therefore, the Irish staff and management were very experienced in having

2 Company names are all pseudonyms.
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projects offshored to them. Two years prior to undertaking this case study the organi-
zation’s corporate strategy changed and they initiated a policy of establishing virtual
testing teams. The objective of this policy was to leverage the technical ability of
their Irish staff with the competitive salary levels of their Malaysian test engineers.
When this research commenced four virtual testing teams were in operation between
the Irish and Malaysian divisions. Some teams were established for over a year and
a half while others had only been in operation for a number of months. This case
study focused on two embedded units of analysis. One was a virtual testing team
with members located in Ireland and Malaysia which had been in operation for a
period of eighteen months. The second was a virtual team with a similar makeup,
but had been established for just over six months [11–13, 18].

2.3.2 Research Methodology

The research methodology employed in the first and second case studies was the
action research five-phase cyclical process based approach [2, 58]. Action research
entails the analysis of the direct intervention of the researcher. This methodology
was selected as the most appropriate for both case studies as one of the authors held
a management role in the respective organizations. This approach allowed us to
leverage the research opportunities while maintaining the required level of objectiv-
ity. For the third case study, the authors had the opportunity to undertake extensive
on site research. We selected and implemented a Yin-based embedded case study
[60] which incorporated a Strauss and Corbin grounded theory [57] approach to
data gathering and analysis. The GSE research which we carried out resulted in
the definition of 25 factors which affect the effective implementation of GSE (see
Section 2.4.2).

2.3.3 Development of the Global Teaming Software Process Area

Following the definition of these 25 factors, we studied existing software process
models to understand how they have implemented GSE, and observe that they do
not explicitly focus on its implementation. Given the substantial growth of GSE,
we considered this a weakness, and have recognised the importance of presenting
explicitly defined processes to support GSE implementation. Through a gap analysis
between CMMI R© and the findings from our case studies outlined in Section 2.3.1,
we observed that the definition of a GSE process to support the implementation
of virtual teams is missing. Therefore we have identified a specific process area,
Global Teaming (GT), establishing specific goals and sub-practices. While we have
structured these to be similar to the CMMI R© model, the implementation of the
Global Teaming process area does not require CMMI R© implementation. Rather
it can be used as a process which organisations can implement when establishing
global software teams.
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2.4 Global Software Engineering

The growth of GSE in recent years requires that many software engineers must col-
laborate over geographical, temporal and/or cultural distance, collectively termed as
“global distance”3 [6, 50]. The advent of this strategy has been facilitated by fac-
tors which include the development of the Internet, increased use of e-mail and low
cost international telecommunication infrastructure [44]. In addition, the availability
of highly skilled software engineers in low cost locations such as Eastern Europe,
Latin America and the Far East [20], coupled with the desire to cut costs and avail
of the benefits of establishing operations close to emerging markets, have all con-
tributed to the selection of this strategy. In some cases, application development and
maintenance have been outsourced to remote third party organisations. In others,
organisations have set up subsidiaries in low cost economies and offshored part or
all of their software development to these locations [8, 59]

2.4.1 Virtual Teams

Our initial research focus was on that of the operation of virtual teams. The vir-
tual team has been described as the core building block of the virtual organisation
[23, 36, 42]. A traditional team is defined as a social group of individuals who are
collocated and interdependent in their tasks. The group undertakes and coordinates
their activities to achieve common goals and share responsibility for outcomes [49].
Virtual teams have the same goals and objectives as traditional teams and interact
through interdependent tasks, but operate across time, geographical location and
organisational boundaries linked by communication technologies [40]. They nor-
mally operate in a multicultural and multilingual environment which may cross
organisational boundaries [24]. Communication between virtual team members is
normally electronic and asynchronous with limited opportunities for synchronous
contact [40]. The team may function on a permanent or temporary basis which is
contingent on the demands of the business environment in which it is operating.
Their overall objective is to function as a single team, with the same goals as if they
were in a collocated situation.

However, GSE is not without its inherent business related risks [38]. This has par-
ticular relevance when organisational boundaries are crossed. There can be aspects
of a software application that provides competitive advantage to the organisation
that are having it developed [38]. In this case, they may not wish to grant access to
such information to an outside organisation, even where they are temporally part-
nered with them. To prevent this, the implementation of a virtual team strategy can
be employed to allow the partitioning of development across sites. The activities

3We use the term ‘global distance’ when we discuss geographical, temporal and cultural distance
collectively.
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that need to remain confidential are undertaken by the organisation’s own virtual
team members, whereas related activities are undertaken by external remote team
colleagues.

The implementation of a virtual team strategy can simply be a cost based deci-
sion. This can be achieved by combining the technical skills and experience of staff
located in a high-cost centre with engineers in a low-cost location. If the goal is a
short-term strategy, then it may be used simply as a knowledge transfer exercise. If,
on the other hand, it is a long-term objective, sustained support will be required for
team members at all locations.

While the term “distributed team” simply states the geographical location of the
team members in the same organisation, the important difference between a virtual
team and a distributed team can be considered as the interdependence of tasks. In
this context, all virtual teams are distributed, but not all distributed teams are vir-
tual. It is possible to have a team which is geographically distributed, but where
the work has been partitioned in such a manner that there is no interdependence of
tasks between team members. In these circumstances this team is distributed, but not
virtual. We are proposing a global teaming process for global teams where there is
clear interdependence of tasks between team members at both locations i.e. virtual
teams.

2.4.2 Project Management Challenges

Within such virtual teams, organisations still face the regular collocated project
management challenges of co-ordination, communication and cooperation [30, 43].

Global distance introduces its own barriers and complexities which negatively
impacts these project management challenges [7, 22, 31, 46]. Our research has
demonstrated that there are 25 factors which come into play during the implemen-
tation of global projects [10, 11, 18]. These need to be explicitly considered when
implementing a GSE strategy. The factors are listed in Table 2.1.

In addition, these factors often have a compounding effect on each other, fur-
ther increasing the possibility of negative impact. For example, skills management
is complicated when there are language difficulties across global distance. In addi-
tion, not only should the factors we identified by considered, but the collaboration
models used need to be considered. Research by Smite [55] has shown that, in

Table 2.1 Global software development factors

Communication Skills management Language Tools Fear
Communication tools Knowledge transfer Motivation Culture Trust
Temporal issues Defined roles and

responsibilities
Technical support Teamness True cost

Effective partitioning Team selection Coordination Visibility Reporting
Project management Risk management Cooperation Information Process
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Fig. 2.1 GSE distribution of life-cycle stages in 4 cases [55]

practice, the variety of collaboration models used where parts of the life-cycle are
shared between groups [6, 29], is indeed quite substantial. She developed 19 models,
four of which are shown in Fig. 2.1. For example, systems analysis, design and test-
ing may be undertaken in one country while coding is undertaken in another. Smite’s
work focused on four stages of the life-cycle in two-site projects, and it is inevitable
that examining more stages in multiple-site projects would have many more models
associated with them. Consequently, collaboration by software engineering teams
across global distance must be managed correctly to ensure successful develop-
ment and implementation of software projects [13, 38], and Global Teaming will
support this.

2.4.3 Global Teaming – A GSE Process Area

GSE requires cognisance to be taken of the cultural, social, geographical and tempo-
ral differences which are experienced and can cause difficulties when implementing
a GSE strategy [6, 38] Our research has demonstrated that there are 25 factors which
should be taken into account when teams operate in a global environment [18], many
of which have been corroborated by other researchers [6, 22, 25, 30]. However,
despite the increase in GSE internationally, software process models do not explic-
itly discuss GSE and factors that affect it. The Global Teaming process area has
been developed as an initial step to fill this gap.

Global Teaming has two specific goals (SG), each of which has specific practices
(SP) and sub-practices. These are as follows:

• SG1: Define Global Project Management

SP1.1 Global Task Management:
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Determine team and organisational structure between locations.
Determine the approach to task allocation between locations.

SP 1.2 Knowledge and Skills:

Identify business competencies required by global team members in
each location.

Identify the cultural requirements of each local sub-team.
Identify communication skills for GSE.
Establish relevant criteria for training.

SP 1.3 Global Project Management:

Identify GSE project management tasks.
Assign tasks to appropriate team members.
Ensure awareness of cultural profiles by project managers.
Establish cooperation and coordination procedures between loca-

tions.
Establish reporting procedures between locations.
Establish a risk management risk management strategy.

• SG2: Define Management between Locations

SP 2.1 Operating procedures:

Define how conflicts and differences of opinion between locations are
addressed and resolved.

Implement a communication strategy for the team.
Establish communication interface points between the team members.
Implement strategy for conducting meetings between locations.

SP 2.2 Collaboration between locations:

Identify common goals, objectives and rewards
Collaboratively establish and maintain the work product owner-

ship boundaries among interfacing locations within the project or
organisation.

Collaboratively establish and maintain interfaces and processes
among interfacing locations for the exchange of inputs, outputs,
or work products.

Collaboratively develop, communicate and distribute among interfac-
ing teams the commitment lists and work plans that are related to
the work product or team interfaces.

2.5 Global Teaming Process Area

In the following sections we list the sub-practices included in the Global Teaming
Process Area. We then discuss our rationale for including each sub-practice,
which is based on our research to date within GSE and on the research of others
(referenced).
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2.5.1 Global Teaming Specific Goal 1: Define Global
Project Management

Within the Global Teaming process area, specific goal 1 recognises that global
project management, while including tasks that would be expected within collocated
project management, must also encompass tasks that exist because of the existence
of their virtual software engineering team.

2.5.1.1 SP 1.1 Global Task Management (1): Determine Team
and Organisational Structure Between Locations

In the software industry, the overall objective of a team structure is to facilitate
the successful management, coordination and operation of the team so that they
produce specific software artifacts. Implementing such a structure is an important
factor for the success of a GSE strategy [38]. To do this, the organisation should
create roles, relationships and rules which can facilitate coordination and control
over geographical, temporal and cultural distance.

In general, global teams are larger than collocated teams. Overall team size can
directly impact on the effective operation of the virtual team [4], as does the number
of members situated at specific geographical locations. A concern is that team mem-
bers may feel that if larger groups are located in one or more remote geographical
sites all the work may be centralized in these locations. This can lead to feelings
of alienation and fear for the future of their jobs, particularly for team members
based at the location from which the work has been outsourced [13]. Furthermore,
management at one location may have responsibility for both their local and remote
locations. In this case, a danger is that the manager may give undue priority to
their divisional or organisational needs, rather than the requirements of the full
global team and the specific project on which they are working. The global team
should be structured and their operation monitored in such a way that minimises
this risk.

The team structure should also cater for the possibility of dual reporting to man-
agement at more than one location, particularly where there the team structure is
cross divisional or multi-organisational. To address these issues, the organizational
and team structure must ensure that the supervision, support and information needs
of all team members are met regardless of location. Documenting this structure
and providing access to this information is important as this allows staff to clearly
understand everyone’s roles and responsibilities within the project [38].

2.5.1.2 SP 1.1 Global Task Management (2): Determine the Approach
to task Allocation Between Locations

The objective of this sub-practice is to distribute work so that the advantages of
GSE are leveraged and the negative factors which are inherent to its operation
are minimised. Effective allocation should be based on the organisation’s require-
ments. For example, if proximity to market is the reason that a development team
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is located in a particular country, then customer-related tasks should be allocated
to that team. Tasks which require frequent communication between groups should
be retained within collocated teams. However, GSE teams are often subdivided into
work modules, so that different locations undertake different development stages
of the life-cycle. As illustrated in Fig. 2.1, this subdivision can vary widely. What
is important is that management clearly define which stages are carried out within
each local sub-team, and that the core competencies for those development stages
are identified.

2.5.1.3 SP 1.2 Knowledge and Skills (1): Identify Business Competencies
Required by Global Team Members in Each Location

There can be a variety of reasons for businesses implementing GSE strategies.
Probably the most commonly quoted is the cost advantage – where companies often
integrate lower cost labour with higher cost labour. However, there are other busi-
ness reasons for implementing GSE, including that a team in another country allows
access to a larger customer base in that country. Because of this, the global team
needs to have an understanding of that customer base and consequently, the busi-
ness functions within that country. An example would be where the local team is
required to know about the fiscal policy within their home country.

2.5.1.4 SP 1.2 Knowledge and Skills (2): Identify the Cultural Requirements
of Each Local Sub-team

There have been many difficulties experienced by GSE teams due to lack of under-
standing of the socio-cultural requirements of the sub-teams. Culture normally
remains below everyday consciousness and only becomes obvious when it is con-
trasted with different cultural norms, values and assumptions as in GSE teams.
Within software development teams, cultural differences can give rise to misunder-
standings [25, 30]. To address the issues related to cultural diversity, team members
must have a basic understanding of each others’ national culture. Important factors
which seem to have most effect are [38]:

1. Some cultures do not promote individual responsibility and accountability.
2. Some cultures accept most suggestions without much discussion.

We have identified that training in culture is important, so that each sub-team can
understand each other. Furthermore, face-to-face meetings are very useful when and
where possible. Having individuals visit locations for extended periods can also be
a successful strategy and should be fully leveraged at every possible opportunity.

2.5.1.5 SP 1.2 Knowledge and Skills (3): Identify Communication
Skills for GSE

Individual team members are now required to be able to communicate and work with
people who they do not know and whose cultures they may not understand. They are
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expected to use communication tools such as instant messaging, audio conferencing
and video conferencing for which they need to develop a new etiquette. Policies
should be put in place to support these new requirements. They may also be required
to work across different time zones, and impositions on their personal time may also
occur. Furthermore, a common practice which should be avoided is that those at an
outsourcing or offshoring location schedule all conference calls to suit their local
teams’ times. This results in permanently inconveniencing remote staff and this adds
further to their level of dissatisfaction [7]. This also increases the probability that
overworked, trained and competent staff will seek positions elsewhere and leave the
organisation.

2.5.1.6 SP 1.2 Knowledge and Skills (4): Establish Relevant Criteria
for Training Teams

GSE cannot succeed without effective knowledge transfer and training [30]. While
remote team members usually have the required academic background to undertake
their respective roles and responsibilities, they may lack domain specific knowledge
and experience. To be effective, an evaluation of training needs should be car-
ried out, and cultural and linguistic issues considered. Those implementing training
should be aware that training practices which have been successfully implemented
in a collocated situation may not be successful in a global environment. The most
effective method for the provision of global team training is onsite and face-to-face
training [38, 41]. This ensures that the training needs of the team members can be
directly assessed and provision made to address their specific requirements.

2.5.1.7 SP 1.3 Global Project Management (1): Identify GSE Project
Management Tasks

Global project managers are required to do the tasks that are expected of a local
project manager, but they must also plan, facilitate, implement and monitor global
communication and coordination related activities with effective policies and proce-
dures. In the ideal situation, the project manager will have been actively involved in
the recruitment and selection of team members. In the absence of this, they should
be supported by the provision of as much information as possible on the technical
and professional experience of potential and existing team members. When teams
are in place, they may need to request additional information about individuals, and
also, when project details are reported, spend more time understanding how individ-
uals contributed to that project. As they will often be based remotely from their team
members, they may not have the opportunity to see their contribution first-hand. The
project manager needs to build up their knowledge about each team member.

We have seen, in our research, that in some cases, competent people in the
distributed location, often agree to undertake unrealistic amounts of additional
work [13]. This can be attributed to their revering of hierarchy and their reluc-
tance for cultural reasons to say no to requests from a superior [6, 33]. This can
have serious implications for the individuals involved and is only sustainable in
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the short term given the level of effort required. Therefore, it is important that
the global project manager is aware of this situation and tries to prevent it from
happening.

2.5.1.8 SP 1.3 Global Project Management (2): Assign Tasks to Appropriate
Team Members

The effective partitioning and allocation of work across the GSE team must be
addressed. The objective should be to distribute work so that the advantages of
GSE are leveraged and the negative factors which are inherent to its operation are
minimised. This can be achieved by implementing one or more of three different
approaches to task allocation [6]:

• Modularisation
• Phased-based approach
• Integrated approach

Modularisation, which entails partitioning of work, is a key concept which
supports effective organisation and management in globally distributed develop-
ment and virtual team operation. Modularisation is based on the work of Parnas
(1972) who defined it as: “In this context ‘module’ is considered to be a respon-
sibility rather than a subprogram” [47]. In the GSE team environment, this can
be achieved by the effective partitioning of work into modules which have a
well defined functional whole [6]. If done successfully, independent or semi-
independent units of the project can be undertaken entirely at specific geographical
locations, limiting the need for communication and cooperation between team
members.

With a phase-based approach discrete phases in the development cycle can be
undertaken at different locations. This approach can be implemented if phases are
relatively independent. It is also required that those who carry out the work under-
stand what is required at each specific stage. The phase-based approach can reduce
dependence between locations.

The integrated, or “follow the sun” approach endeavours to leverage the temporal
difference between global team members’ geographical locations. Unfinished work
is passed between different locations to fully utilise staff and tools [6], facilitating
24 h a day development and achieving development and testing cycle times which
are not possible when implementing a collocated team based strategy [51]. This
approach requires high dependence between locations.

2.5.1.9 SP 1.3 Global Project Management (3): Ensure Awareness of Cultural
Profiles by Project Managers

In both co-located and GSE teams, team members should have the knowledge and
skills to carry out the projects which have been assigned. However, in the case of
global teams, it is also important that project managers understand that culture and
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its understanding (or lack of) can play a major part in the success of a project. This
includes religion, gender and power distance [14].

Some organisations consider that their corporate socializing process is adequate
to address the cultural issues which arise when managing a GSE team. The real-
ity is that, in a situation where there are major differences between corporate and
national cultural norms, this is generally not the case, and often, national cultural
differences should be identified and communicated to the management and team
members [17]. This can be achieved by providing specific cultural training which
gives all team members an opportunity to learn and understand about each other’s
culture. Training should address national, religious and relevant ethnic issues which
have the potential of negatively impacting on the operation of the virtual team and,
ultimately, all team members should understand acceptable and unacceptable forms
of behaviour. Cultural training should be tailored to team member’s specific needs
and location [13].

There are often gender issues which need to be dealt with. In some Eastern cul-
tures the female role is seen as subservient to that of the male. In such cultures,
attitudes to gender, not normally acceptable in Western countries, are still preva-
lent and accepted as the norm. This attitude to women is reinforced by religious
belief and in some countries, by the legal system. These attitudes to gender have
specific implications for managing virtual teams. Males from these cultures may
have problems reporting to female team leaders or managers. In one case during our
primary research, a male project manager from the Far East would not work with a
female project manager from Ireland, on religious grounds, and he was subsequently
removed from the project [18]. This illustrates that project managers, while ensuring
that employee’s legal rights are upheld, should also ensure that cultural profiles for
teams are also established. Remote female team members may need to be addressed
in a particular way. Furthermore, there is a need for management and staff to show
respect for the gender-related cultural values of all colleagues so that they do not
negatively impact on the operation of the team.

2.5.1.10 SP 1.3 Global Project Management (4): Establish Cooperation
and Coordination Procedures Between Locations

Teamwork is a cooperative activity, and global distance negatively impacts the level
of cooperation that takes place between global team colleagues [13, 32]. The project
manager must support the establishment and development of effective cooperation
within the virtual team. They can implement tools, processes and technology to sup-
port cooperation but must also ensure that team members are motivated to use these
tools. Furthermore, project managers must be aware of, and take specific measures
to address potential problems before they arise. When specific problems are identi-
fied, the project manager should implement informed and appropriate measures to
address them.

Coordination is another key activity which is negatively impacted by global dis-
tance [8, 32]. Effective coordination ensures that adequate planning is carried out
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and the required resources are provided to undertake GSE, including suitable infras-
tructure, processes and management procedures. Achievable milestones should be
planned and agreed. In addition, projects should be monitored with reference to
costs, time, productivity, quality and risk.

2.5.1.11 SP 1.3 Global Project Management (5): Establish Reporting
Procedures Between Locations

The project manager needs to be aware of how the project is progressing and
therefore needs to establish regular reporting. In the collocated situation, informal
reporting can keep management up-to-date with progress, but in the global team,
there is rarely the opportunity for those informal updates. Implementing formal
reporting for what often should be an “informal” situation can make structures and
interactions between management and team members more rigid than would be pre-
ferred. However, without implementing such reporting structures, there is a danger
that the remote team, given their cultural background, may not report correctly.

Furthermore, when coming from a Western background, in some Far Eastern
cultures requests and instructions are accepted without comment or discussion. To
disagree is considered impolite and the objective is to avoid conflict at all costs
[38]. In these societies, organisational hierarchy is also an important issue and is
adhered to strictly. Often, there is no discussion as to whether a request is reasonable
or not, and global team members may take on tasks which they are unprepared
for technically. Requests must come from the correct authority figure and are then
carried out without question or comment.

2.5.1.12 SP 1.3 Global Project Management (6): Establish a Risk
Management Strategy

Risk management should be incorporated into all well planned software projects.
All software projects have pervasive risks which include issues such as misunder-
standing requirements, feature volatility, unrealistic schedules, budgetary over runs
and personnel associated problems [38]. Globally distributed virtual team projects
carry additional high risk exposure as the risks associated with managing a cultur-
ally diverse virtual team are often not understood, underestimated, or in some cases,
not even considered [30] as discussed in previous sections.

Another culture-related risk to virtual team project management is that there is
often a lack of information among local team members about the culture of remote
staff. This has been highlighted by some Far Eastern cultures revering of hierar-
chy [6, 38]. This manifests itself in a number of ways, often resulting in them not
expressing a negative opinion and constantly agreeing to undertake additional work.
Rather then saying they are unable to cope with these additional activities they work
excessive hours and eventually leave the organization [13]. This can have serious
implications for the success of the project as a whole. In addition, risk associated
with outsourcing activities to politically unstable locations needs to be identified.
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2.5.2 Global Teaming Specific Goal 2: Define Management
Between Locations

Specific goal 2 focuses on global project management between locations. This is
done through two specific practices. The first ensures that operating procedures are
set up correctly. The second focuses on collaboration between locations.

2.5.2.1 SP 2.1 Operating Procedures (1): Define How Conflicts
and Differences of Opinion Between Locations
are Addressed and Resolved

For successful GSE, an effective and defined conflict management strategy should
be implemented [6]. In the collocated situation, staff have the opportunity for regular
face-to-face contact and, on that basis, can often work their problems out, and there-
fore, a less formal approach is needed. This is not the case with remote colleagues.
In this setting, as stated by Karolak (1999): “There must be some mechanism for
handling conflict resolution and someone who decides that resolution”.

When defining the global strategy for dealing with conflict, different types of
conflict have to be taken into account. Some are open and easy to recognize.
However, in global teams where trust has not been established, and particularly
where fear of jobs being outsourced to remote locations exists, conflict can manifest
itself. This includes the development of a “them and us” culture which can lead to
uncooperative and obstructive behaviour which needs to be addressed in the strategy.

2.5.2.2 SP 2.1 Operating Procedures (2): Implement a Communication
Strategy for the Team

Effective communication is a key factor for the successful operation of global teams
[6, 38] and we consider it very important that within the operating procedures of GT,
a communication strategy is implemented. The objective of good communication is
to facilitate the dissemination of relevant information, but the communication pro-
cess is hampered by global distance. The loss of face-to-face contact and the need
to rely on asynchronous tools impact on communication levels. This then impacts
on the amount of information that is transmitted between global team members
[32]. Good communication must be planned, facilitated, encouraged and moni-
tored. It is useful to provide training on how best to communicate with remote
colleagues, including the effective operation of communication tools and procedures
and the linguistic and cultural implications which are inherent when communicating
remotely.

2.5.2.3 SP 2.1 Operating Procedures (3): Establish Communication Interface
Points Between the Team Members

In the GSE environment, individuals across teams do not communicate with each
other “on the corridor”. Therefore, it is important to put interfaces and processes in
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place which encourage both formal and informal reporting. Such reporting should
ensure that all relevant team members are aware of how and when they will receive
inputs to, distribute outputs from and complete work products. Teams should also be
aware of other implications such as legal restrictions, or the effect holidays can have
on the project timetable in countries within which they are developing the product.

To be effective, global teams require that information about basic issues such as
local time and public holidays in each location is available. Information about each
team member should be easily accessible by colleagues. Apart from indicating an
individual’s role within the team and their specific areas of responsibility, this should
also include a photograph, their first name, surname, friendly name (if appropriate)
and their preferred form of address. The availability of such information is taken for
granted in a collocated environment, but it is not always clear when dealing with
remote colleagues. Intranets and wikis are invaluable for this purpose.

2.5.2.4 SP 2.1 Operating Procedures (4): Implement Strategy for Conducting
Meetings Between Locations

In a collocated situation, meetings are usually easier to organise than in the situation
where team members are geographically and temporally distant as in the latter situa-
tion it is unlikely that all team members can meet face-to-face. Therefore, alternative
means of communication may need to be used. It must be remembered that not all
employees will be comfortable participating in meetings held via audio or video,
particularly if they have not had the opportunity to meet their global colleagues
face-to-face. Project managers may need to change how they conduct shared meet-
ings. In addition, many GSE companies now implement a policy whereby they host
the meeting, and then circulate minutes to all attendees, clearly articulating what
has been agreed at the meeting. This adds an extra overhead, but it is very useful
when following up on work agreed to be done. It is important to ensure that no delay
occurs between the meeting and the circulation of minutes as people may be waiting
for the minutes before implementing the actions.

2.5.2.5 SP 2.2 Collaboration Between Locations (1): Identify Common Goals,
Objectives and Rewards for the Global Team

Global teams require goals and objectives to be agreed and understood by all
the team members, regardless of location. Then, team members can focus on the
achievement of these goals and success should be measured by their accomplish-
ment [30]. Success can never be measured by the achievements of members at one
geographical location. To actively foster this approach, the global team must be
seen as an entity in its own right, regardless of the location of its team members and
therefore, its performance should be judged and rewarded accordingly.

With regard to acknowledging success, what may be considered a reward in
one culture can be seen as insulting to someone from another culture. The idea
that “money talks” in every culture is far too simplistic an approach [54]. Cultures
place different values on different types of rewards such as money, status and group
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achievement. Project Managers need to understand the cultural motivation of the
different team members and to identify and apply appropriate rewards in each situ-
ation when and where relevant. As well as cultural diversity, the economic situation
and the income tax laws at each location need to be considered when determining
the form of reward provided. The objective is the development of a motivated and
focused team who share a common purpose and objectives.

2.5.2.6 SP 2.2 Collaboration Between Locations (2): Collaboratively Establish
and Maintain the Work Product Ownership Boundaries Among
Interfacing Locations Within the Project or Organisation

Work product ownership boundaries can be defined through the effective partition-
ing and allocation of work across GSE teams. And it is likely that different stages of
product development will occur in different sites (Fig. 2.1). Therefore, it is important
that each location understands their role is in the life cycle of the product, and how
modifications to the product unit they are developing can affect the other locations.
In our research, we have seen requirements changes distributed to specific locations
rather than to all sites, which resulted in product interfacing being unsuccessful.

2.5.2.7 SP 2.2 Collaboration Between Locations (3): Collaboratively Establish
and Maintain Interfaces and Processes Among Interfacing Locations
for the Exchange of Inputs, Outputs, or Work Products

An important aspect of GSE process is ownership. Good software practice recog-
nizes that process ownership and development are best placed with those who are
closest to the process. Often, a collocated process from the parent site is simply
exported and implemented in the distributed site. We have studied situations where
input was not encouraged or welcomed from distributed team members, and this led
directly to the alienation of those team members whose needs were not met by the
process and whose suggestions for improvement were ignored [13].

Therefore, common process goals should be established across locations. The
input of team members at all locations should be sought, encouraged and valued.
Process needs to address the specific challenges associated with GSE should be
identified. This will ensure that relevant structures and procedures from all sites are
taken into account to achieve this goal.

2.5.2.8 SP 2.2 Collaboration Between Locations (4): Collaboratively Develop,
Communicate and Distribute Among Interfacing Teams
the Commitment Lists and Work Plans that are Related
to the Work Product or Team Interfaces

Effective coordination within a distributed software project necessitates that achiev-
able milestones are planned and agreed. In GSE, there is the additional requirement
for effective monitoring to be put in place to oversee ongoing progress with refer-
ence to costs, time, productivity, quality and risk. The provision of contingencies
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to address potential risks also has to be considered and procedures established to
coordinate their implementation when and if they are required. The effective use of
synchronous and asynchronous communication tools is an essential aspect of GSE
communication. Therefore, it is important that within the commitments made, team
members explicitly include communication plans.

2.6 Discussion

Much of the research on GSE has focused on understanding why there are diffi-
culties with implementing GSE within organisations. While this provides a needed
understanding of GSE, it is also important that we, the GSE researchers, present
industry with solutions to their GSE difficulties. The Global Teaming process area
presented in this chapter is an important step in this direction. Through its devel-
opment we provide specific goals, specific practices, sub-practices and guidelines
which can be used by industry who are implementing a GSE strategy. With the
increasing globalisation of software engineering and the distribution of teams inter-
nationally, it is important that industry have access to such information. Our next
stage of development is to evaluate the model in industry through action research.

2.7 Conclusion

As many organisations have discovered to their cost, implementing a GSE strat-
egy is a complex and difficult task. Extensive research in this area has identified
that this is due to a number of factors which include the nature and impact of geo-
graphical, temporal, cultural and linguistic distance [6, 15, 38]. In addition, whether
undertaken in a collocated or geographically distributed environment, team based
software development is not simply a technical activity. It also has important human,
social and cultural implications which need to be specifically addressed. While the
technical aspects of software development cannot be underestimated, neither can the
importance of establishing and facilitating the effective operation of these teams.

Organisations require support in the implementation of their GSE strategy. Our
development of the Global Teaming process area was based on the importance of
establishing effective software teams in the globally distributed setting. In addi-
tion, when implementing software process improvement there is a requirement for
tangible results to be achieved in a reasonable time frame. This is particularly impor-
tant to sustain the level of effort required for improvement to take place [9, 21].
By implementing the Global Teaming process, prompt and effective results can be
successfully achieved as it addresses a key aspect of GSE.
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Glossary

CMMI Capability Maturity Model Integrated

GSD Global Software Development

GT Global Teaming

Insourcing Allocating work to a subsidiary or internal department of the client
organisation.

Nearshoring Software development work is either insourced or outsourced to a
team located in a country that is geographically close to the client organisation’s
country.

Offshoring Software development work is either insourced or outsourced to a
team located in a country geographically far from the client organisation.

Onshoring Software development work is either insourced or outsourced to a team
located in the same country as the client organisation.

Outsourcing Delegating work to a non-client entity, such as a software vendor.

SPICE ISO/IEC 15504
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Chapter 3
Requirements-Driven Collaboration: Leveraging
the Invisible Relationships between
Requirements and People

Daniela Damian, Irwin Kwan, and Sabrina Marczak

Abstract In this chapter we introduce requirements-driven collaboration, which is
the collaboration of a cross-functional team of business analysts, designers, devel-
opers and testers during the development and management of requirements. We
describe an approach that (1) constructs a requirement-centric social network which
represents the membership and relationships among members working on a require-
ment and its associated downstream artifacts and (2) outlines a number of social
network analysis techniques to study collaboration aspects such as communication,
awareness, and the alignment of technical dependencies driven by development of
requirements and social interactions. To demonstrate our approach, we discuss a
case study that examines requirements-driven collaboration within an industrial,
globally-distributed software team. Finally, we discuss implications regarding the
use of our requirements-driven collaboration approach for research and practice.

3.1 A Requirements Perspective on Collaboration

Requirements Engineering (RE) is an area filled with challenges of a non-technical
nature [15]. RE involves activities such as negotiation, analysis and requirements
management. RE requires communication from the elicitation phase [1, 6] down
to the analysis, implementation and test phases. As such, it involves collabora-
tion among large, often geographically distributed cross-functional teams comprised
of requirements analysts, software architects, developers, and testers. This col-
laboration is driven by coordination needs in software development and relies on
communication and awareness.
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Coordination – the act of managing interdependencies between activities [26]
– is a critical aspect in every activity related to a requirement’s analysis, imple-
mentation or testing. Developers allocated to developing requirements coordinate to
establish a common understanding about the work to be done. Since requirements
are volatile, ongoing coordination is necessary to manage interdependencies with
those working on the artifacts related to a changed requirement. Changes in one
requirement need to be propagated to those who work on dependent requirements
and related downstream artifacts. Neglecting coordination with those who work on
dependencies may result in failures [8].

Team members coordinate using two methods [33]: by following a pre-defined
process, and through communication. Most teams manage technical dependencies
by adopting processes that may be supported by tools, such as requirements man-
agement, modeling, source code management, plans, or issue tracking tools [12, 16,
36]. However, coordination by communication is prevalent, especially because doc-
umentation becomes obsolete and relevant knowledge may reside only with people.
Studies found that large projects have extensive communication and coordination
needs [7] and developers spend much of their time communicating with others
[20, 28].

The awareness one has of another’s work affects coordination processes [9, 12,
13, 16, 21, 31]. When project members coordinate with others, they gain knowledge
of the task and team [16]. This knowledge, referred to as team knowledge, helps
them coordinate implicitly. Team knowledge can be divided into two types: long-
term knowledge, and short-term knowledge or awareness [5]. Long-term knowledge
is acquired through training and experience. This information is retained and is use-
ful throughout an entire project. Awareness refers to information that is relevant
for a task at hand; once the situation passes, the information is no longer relevant.
Awareness includes knowing about what others are doing to synchronize actions, or
what information others know within a team.

Effective coordination, knowledge management and information sharing among
team members with diverse organizational and functional backgrounds is critical.
Team members carry out the implementation of requirements, but coordinating such
a wide variety of people is a challenge. Often there are communication and organi-
zational boundaries between each of these roles [1], as well as different expectations
with respect to communication processes.

Collaboration across geographical distance (i.e., different time zones) and socio-
cultural distance (i.e., language and culture) creates additional challenges in project
members’ communication and awareness in the development project (e.g., [11,
16, 19]). A team communicates less effectively with a remote team than with a
collocated team, resulting in a lack of knowledge of remote team activities [16].
This hinders a project manager’s ability to keep track of the effects of changes as
they propagate across sites, and can lead to misunderstanding requirements, low
trust among teams, and reduced team productivity [11]. There is little support for
monitoring progress of requirements or identifying specialists [6]. While some col-
laborative tools aiming at supporting RE in distributed teams [25] rely on teams
self-subscribing to communication about a particular requirement, we found that
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teams that have relevant knowledge and work related to particular requirements have
dynamic membership with unpredictable patterns [10].

By taking a requirements perspective on collaboration, we seek to further our
understanding of the many aspects surrounding the communication, coordination
and awareness of cross-functional teams throughout the project life-cycle, and
which face challenges of socio-technical and organizational nature.

3.2 An Approach to Study Requirements-driven Collaboration

Requirements-driven collaboration is collaboration that occurs during the develop-
ment, implementation and management of requirements. To study requirements-
driven collaboration, we describe an approach that uses concepts and techniques
from social network analysis [34] to obtain insights about the communication,
coordination and awareness patterns of those involved in requirements-driven col-
laboration. Our approach is based on a structure that focuses on the requirement
as the unit of work around which collaboration occurs. We term this structure a
requirements-centric team. Our approach then consists of two steps:

1. Define the requirements-centric social network as a representation of members
and relationships in a requirements-centric team.

2. Define a number of social networks analysis techniques to study aspects of
requirements-driven collaboration.

A requirements-centric team (RCT) is a cross-functional group whose mem-
bers’ work activities are related to one or more interrelated requirements, as well
as downstream artifacts such as design, code and tests. By “related to” we consider
relationships such as “working on”, “assigned to”, and “communicating about”.

The membership of an RCT contains individuals that have a relationship to a
requirement or multiple interrelated requirements. Such relationships also include
relationships to downstream artifacts that trace to the requirement. Thus, the RCT
membership includes individuals who work on project artifacts such as require-
ments, design, code and test cases, as well as individuals who send and receive
communication artifacts such as E-mail and instant messages. As an example, con-
sider a project team comprised of team members Bob, Eva, Frank, Geoff, Lisa, Ron
and Todd, and a number of requirements R1, R2 and R3. The following activities
and relationships have been recorded: Lisa, a software designer, is writing a design
specification implementing R1, as well as test cases for R1. Todd has written code
that implements R1. Eva and Todd exchanged an email message during their work
about R1. Consequently, the RCT associated with R1 (R1CT) contains Lisa, Todd,
and Eva. This is illustrated in Fig. 3.1 that shows R1 on the requirements plane, its
associated project and communication artifacts on the artifacts plane, and the R1CT
on the requirements-centric team’s plane.
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Fig. 3.1 Requirements-centric teams and different RCSNs

Although a requirement-centric team most likely contains people working on a
single requirement, it can also provide a view of people who are working on multi-
ple related requirements. If a requirement is related to another through requirement
dependencies such as structural (e.g., refined-to, changes-to and similar-to depen-
dencies), constraining (e.g., requires, and conflict-with dependencies) or cost/value
(e.g., increases/decreases cost of dependencies) [8], the requirements-centric team
associated to the interrelated requirements comprises all project members whose
work activities relate to these requirements and their related downstream artifacts.
Figure 3.1 also illustrates the RCT associated to R2&R3 (R3 depends on R2), so the
R2&3CT contains Eva, Todd, Ron, Bob, Geoff and Frank.

The RCT also applies to non-functional requirements. As non-functional
requirements often have a relationship to functional requirements, and cross-
cut many artifacts, an RCT can identify people who should collaborate because
their work on non-functional requirements influence those working on functional
requirements.
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3.2.1 Defining Requirements-Centric Social Networks

To analyze the collaboration within requirements-centric teams, we define a
requirements-centric social network (RCSN). The RCSN is a social network [34]
that represents the members (also called actors) and relationships (also called ties)
in a RCT. The actors in an RCSN are among the members of the RCT, and the ties in
the network are representations of different relationships during these members’ col-
laboration. For example, a tie can represent project members’ requirements-related
communication, assignment to work on the same requirements, contributions to the
development of requirement, or awareness of another’s requirements-related work.

Representations such as social networks allow us to capture information about
the real world relationships that form among people whose work is related to
a requirement, and investigate questions such as Who has worked on artifacts
related to particular requirements? How does this compare to the project plan?
Who communicated or coordinated about these artifacts? Who are central people
in the requirements-based communication and thus are key people in processes of
expertise seeking?

Given specific research interests, one can define what relationships to represent in
an RCSN, and collect appropriate data with to generate RCSNs containing different
relationships. Examples of RCSNs that represent relationships include but are not
limited to the following (Fig. 3.1 is used for illustration):

• Technical dependency RCSN. A technical dependency RCSN contains members
that should coordinate because there are technical dependencies among the arti-
facts they work on, e.g., those that contribute to the requirement and related
downstream artifacts up to the current moment in time. This network is fully con-
nected. In Fig. 3.1, there is a technical dependency between R2 and R3. Because
Eva, Todd, Ron, and Bob are assigned to work on R2, and Geoff on R3, the
technical dependency network contains all five team members. Such a network
can be constructed using repository mining that identifies relationships between
artifacts, such as call graphs and trace links.

This network is useful for identifying how many project members have been
involved in modifying the requirement or associated downstream artifacts. The
information captured in this network can be used to propagate change informa-
tion to members working on the requirement, and, more significantly, members
working on dependent requirements. If one’s work is affected by a dependent
requirement, one has to receive information of changes about the related arti-
facts. Other uses for this network include expertise seeking to find members who
recently worked on an artifact related to the requirement, and monitoring the
amount of activity in the development, to identify requirements that may require
additional resources.

• Communication RCSN. A communication RCSN contains members from
the RCT that have communicated about the requirements or its associated
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downstream artifact. A tie is drawn if one person communicates about the
requirement with another person. To construct a communication network, data
can be extracted from communication repositories such as mailing lists, online
forum systems, instant messenger logs, and comments on bug-tracking systems.

This network is useful for identifying communication activity generated around
a requirement, and an indication of behaviors such as asking for clarifications on
requirements and communication of changes. This network can be quite larger
than the technical dependency network in that it may include members who
emerge as relevant to the coordination driven by the particular requirement –
for instance, by having provided technical expertise – but who do not belong
to the technical network because they have not modified any technical artifact.
Frank is, for example, an emergent person in the R2&3CSN in Fig. 3.1. Similarly,
fewer members than those in a technical dependency relationship may be com-
municating during the project, indicating a possible lack of coordination in the
development of the requirement. Figure. 3.1 shows Bob and Eva as not hav-
ing communicated in a technical dependency relationship. Because there may be
different reasons for communication, such as communication of changes [9, 10],
coordinating activities [28], and requesting clarification [29], one can construct
and analyze networks that capture only the particular reason for communication.

• Assignment RCSN. An assignment RCSN contains members from the RCT that
have been assigned to work on the requirement or on its associated downstream
artifacts. The network is fully connected because it reflects technical dependen-
cies because the members of this network should coordinate with each other. For
example, in Fig. 3.1, Lisa is assigned to work on the design for R1, and Todd
is assigned to coding the modules related to R1. Consequently, Todd and Lisa
appear in the assignment-R1CSN. Such a network can be built by extracting data
from project planning or bug-tracking systems that contain information about
work assignment.

This network is useful for identifying the expected scope of involvement and
coordination in the development of a requirement. When constructed over a
period of time, this network can show changes on allocation of members in a
certain requirement and this information can be used by senior project manage-
ment to restructure functional allocation of members in a department or in the
company.

• Awareness RCSN. An awareness RCSN contains members from the RCT that
have been identified to have awareness about other members and their work in
the RCT. Awareness is the knowledge that one has about others and their working
activities. Examples include knowledge of what is going on in a task in areas
that affect that member’s work [9, 36]; knowledge of which team members are
around, where and when, as relevant for the task [16]; knowledge of how other
members can help one in his work [13]; or knowledge of changes made on a
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project documentation artifact such as requirements specification. In the RCSN a
tie is drawn if one person has awareness about the other, using the different types
of awareness. To construct an awareness-based network, data can be collected
through interviews or questionnaires. A question of the form, “Are you aware
of this project member’s current tasks?” or “Are you aware of how can these
project members can help you in your work on requirement R?” can be asked of
individuals in a project team.

This network is useful for identifying who in the organization is knowledgeable
about activities that surround one’s work. Since coordination activities are a crit-
ical component of collaboration in requirements-centric teams, and awareness
plays an important role in facilitating coordination, information about the extent
to which members in an RCSN have awareness of each other’s work is useful
in diagnosing the “coordination ability” of members in RCSNs. This network
can be different than the communication network because people may become
aware through other means than communication. For example, members devel-
oping code related to a requirement may stay aware of progress by subscribing
to the code repository notification feature. On the other hand, a project manager
may stay up-to-date about what is going on in the project by reading status report
of member’s activities.

3.2.2 Using Requirements-Centric Social Networks to Study
Requirements-Driven Collaboration

Having defined requirements-centric social networks, our approach defines a num-
ber of techniques from social network analysis as mechanisms to explore collabo-
ration aspects of requirements-driven collaboration. We describe research questions
and aspects of collaboration that each of these techniques or analysis can answer.

3.2.2.1 Analysis to Characterize the Networks

The measurements of network properties we present can answer questions such
as: What types of requirements require communication-based coordination? Which
requirements are problematic because of unclear description? and Which require-
ments have undergone many changes?

Network size. Network size is the number of members in each RCSN and helps
convey the amount of coordination required for each requirement. The proportion
of team members involved in a particular requirement out of the total team members
in the project may also indicate the relative size and scope of a requirement.

Network density. Network density is the proportion of ties that exist in the net-
work out of the total possible ties. In requirements-driven collaboration, it is a
measurement of how tightly-coupled the requirements-centric team is, and reflects
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the ability of the team to distribute knowledge [31] about the changes in require-
ments or clarifications about requirements. For example, a communication RCSN
with high density would suggest that the team members communicate a lot with
each other person working on the requirement. If seeking clarifications is the topic
of discussion in the highly dense communication RCSN then one may conclude
that the requirement is very ambiguous and problematic because it necessitates a
lot of information exchange to clarify it. Similarly, a communication RCSN drawn
from messages about requirements change that has high density is indicative of a
requirement that is highly volatile. In the literature, density has been studied in rela-
tionship to coordination ease in distributed teams [22], coordination capacity [23],
and enhanced group identification [30].

3.2.2.2 Analysis of Network Actors

Characteristics of the actors, such as the person’s role in an organization, level
of experience and geographical location, may influence relationships observed
in a network. These characteristics are called actor attributes. By analyzing the
attributes of network actors one can partition the network into smaller and more
specific groups. By studying how information flows within and across groups
one can study, for example, how frequently project members communicate with
those outside their functional group, or how frequently they communicate across
distance.

We can view the requirements-centric social network as consisting of different
functional groups located at different geographical locations, or as groups of experts
and novices. The actor attributes thus provides a useful dimension of analysis of
“distance” between people in the network [35]. The geographical distance is an
obvious one, but here we present other types of distance such as functional distance
or level of experience. If two people are close in one dimension, they may consider
themselves quite distant in other dimensions and make decisions about information
sharing behavior. For example, an engineer may exchange communication more
frequently with geographically-distant colleagues in his same product area than with
the another engineer in the same office. Thus, one can study relationships between
attributes such as distance, functional role and others on patterns of information flow
in RCSNs.

3.2.2.3 Analysis of Network Structure

Network structure – the observed set of ties linking the actors in the network – is
important in the study of requirements-driven collaboration because it allows us
to examine patterns of behaviour of those in positions to send information about
requirements, or of the entire network making decisions about requirements. We
regard a requirements-centric social network as a conduit for propagation of infor-
mation or the exertion of influence. Each project member’s place in the overall
pattern of relationships, largely determined by actor attributes such as location,
experience and role, determines what information that person has access to, and
who that person is in a position to influence. Thus, patterns of information flow
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affect the individual’s capabilities in the project and as such there is an impor-
tant relationship between individual actors’ attributes, capabilities and the network
structure.

3.2.2.4 Analysis of Collaboration Behavior Within the Same Network

Each type of network defined in our approach lends itself to the analysis of key
actors in the networks. Using the following techniques, one can identify mediators
of information flow in communication networks, or members who are most aware
of what others are doing in the requirements-driven collaboration.

Centrality. Centrality is an indicator of who is at the core of a network. For
instance, in a communication RCSN, someone who is central sends and receives
messages to a large number of people in the network. Centrality can be computed
for each actor, to gain a relative understanding of this actor’s position in the net-
work, and a centrality index can be computed for an entire network that quantifies
its centrality as a whole. Centrality is important because it has been shown that cen-
tral network configurations lead to more efficient completion of simple tasks [17].
Specific measures for such as degree centrality and betweenness centrality are useful
in the study of requirements-driven collaboration.

The degree centrality indicates the number of connection of an actor and is
indicative of activity [17]. Similarly, the betweenness centrality measure indicates
when an actor is in between other actors and thus may be in a position to con-
trol interactions between those other actors [17]. While other studies found that
betweenness is a predictor for coordination behavior in software development [23],
in requirements collaboration the presence of actors with high betweenness central-
ity may indicate that the information flow has intermediaries, a typical source for
misunderstanding in requirements.

Brokerage. As work progresses in an organization, people are naturally divided
into subgroups such as teams or geographical locations. Brokerage is the case where
one person, called a broker, is a bridge between two subgroups. The broker is in a
sensitive position because the person is able to control the flow of information into
or out of the subgroup.

Studies of brokers in global software development have identified that bro-
kers effectively disseminate information between distributed sites when maintaining
direct relationships is not practical [22]. They are usually the most knowledgeable
members of a team regardless of geographical distance [14, 27]. In requirements-
driven collaboration, brokers may be essential for enabling effective flow of
information between teams. However, this may be problematic if a broker is
introducing misunderstandings or limiting information transmitted.

3.2.2.5 Analysis of Collaboration Behavior Across Different
Types of Networks

Because requirements-centric social networks capture communication and work
relationships, one can compare different types of networks to learn the effects of
one type of relationship on another.
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Alignment of networks. The alignment between social interactions and techni-
cal dependencies has been studied in software engineering with a measure called
socio-technical congruence (STC) [32]. To compute STC one calculates the ratio of
actual social interactions over the expected coordination needs from the technical
dependencies in the project. Research suggests that a high congruence of technical
dependencies and social interactions improves task completion speed [3]. If a social
interaction is missing where a coordination need exists, it is considered a “gap” in
socio-technical coordination [14].

In our requirements perspective on collaboration, the assignment and technical
RCSNs reflect coordination needs. Similarly, the communication and awareness
RCSNs constructed from data on social interaction reflect actual coordination
behavior and ability respectively. A STC index can be computed by dividing the
number of relationships in the coordination needs network (either assignment or
technical RCSN) by the social interaction network (communication or awareness
RCSN). In requirements-driven collaboration, a low STC index may by a symp-
tom of a larger problem: for example, not coordinating a requirements change with
others who work on interrelated requirements.

Correlation between two network structures. The existence of a relationship in
one type of network may have a correlation to the existence of a relationship in
another type of network. For example, there may be a correlation between pat-
terns of communication and awareness in requirements-driven collaboration. One
can use a social network analysis technique called Quadratic Assessment Procedure
(QAP) to investigate correlations [24]. Previous research used QAP correlation in
studies of software developer’s social networks and found that higher frequency
of communication was associated with higher familiarity and awareness of other’s
work [13].

3.3 A Study of Requirements-Driven Collaboration
in an Industrial Project

As an example application of our approach to study requirements-driven collabo-
ration, we describe the insights from a field investigation of a global commercial
software project in a large international organization. Our goal was to explore how
cross-functional teams related by the work on the same requirement or dependent
requirements coordinate through communication and team knowledge. We thus
sought to identify, for each requirement in the project, properties of communica-
tion in the development of a requirement, as well as of information flow in the
development of dependent requirements. We first describe the project and the data
available. After describing the social networks we analyzed, we discuss our findings
in relation to a set of specific research questions.

We discovered that a RCSN tends to involve more people than initially assigned
to work on the requirement. We also determined that, despite low socio-technical
congruence in some of the RCSNs, project team members were still able to coor-
dinate their work effectively and deliver the project on time. Finally, the existence
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of brokers may have been able to help mitigate the effect of large geographical
distances on project communication.

3.3.1 Construction of the Requirements-Centric Social Networks

The project involved 12 members distributed over two sites, the USA and Brazil,
as follows: 3 in the USA (2 developers, and 1 technical leader) and 9 in Brazil
(5 developers, 1 technical leader, 2 testers, and 1 test leader). They had in average 8
years of work experience and were involved with the project since its inception.

A number of data sources were available in the project and allowed us to col-
lect information about project members’ activities on requirements and associated
downstream artifacts.

From the requirements document we identified a total of 13 functional technical
requirements. In this project the requirements represented requests for updates to
software components that integrate the application with other software products.
For example, one of the requirements referred to upgrading a component in order to
avoid issues on the application after rebooting the machines. The requirements were
described in a high level since the project team had previous knowledge about the
product architecture.

To identify dependencies among the project requirements, we examined the
requirements-traceability document and conducted interviews with team members.
We identified five pairs of dependent requirements in this project. Of the five pairs,
two are structural dependencies and three are constraining dependencies.

To analyze the collaboration around the development of project requirements, we
constructed the following social networks:

1. For each of the 13 requirements, we constructed the assignment RCSN, reflect-
ing assignment to work to each requirement; the communication RCSN, reflect-
ing actual communication on a particular requirement during the project; and
the awareness RCSN, reflecting awareness of requirements-related activities
during the project.

2. For each of the 5 pairs of dependent requirements, we constructed the commu-
nication RCSN.

We were not able to inspect the change management repository and thus were
not able to construct the technical dependency RCSN.

We constructed each network as follows.

1. To build the assignment RCSN for each requirement, we inspected the require-
ments document and project plan and identified all team members who were
allocated to work on the requirement or the associated downstream artifacts.
These members were included as actors in the network. We then fully connect
the network.
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To construct the communication and awareness RCSNs, we collected data
through questionnaires and interviews at the two-thirds point in the project.
For each requirement network, we included all members identified in the
assignment RCSN as well as those who became involved in the coordination
associated to the particular requirement but were not included in the project
plan. We asked the respondents to indicate any additional members with whom
they communicated about a requirement and if they were aware of they were
doing that is related to their work respectively. We also captured the reason
for communication by asking respondents to indicate whether the communi-
cation related any of the following: communication of changes, coordination
activities, requirements clarification, requirements negotiation, and synchro-
nization of code. Figure 3.2 exemplifies membership in the assignment and
communication RCSNs for a requirement that had John, Kyle, Kim and Jim
assigned to its development. The communication RCSN also indicates reasons
for communication for each tie in the network.

2. To construct the communication RCSN for each pair of dependent requirements
(Fig. 3.3), we identified the list of team members who were allocated to work in
every task related to the particular set of dependent requirements by inspecting
the project plan. If the team member indicated communication with another per-
son about any one of the dependent requirements in the set, then we connected
the two people in the communication RCSN for dependent requirements. The
data on the reason for communication allowed us to construct a communication
RCSN for each of the five reasons. We thus constructed a total of 25 networks.
Figure 3.3 shows one of the 5 networks constructed for the two dependent
requirements R1 and R2.

Fig. 3.2 Assignment communication network for requirement 1
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Fig. 3.3 Construction of R1&2CSN

3.3.2 Communication in Requirements-Driven Coordination

To answer questions about communication in requirements-driven collaboration, we
calculated network measurements for the networks we constructed. We analyzed the
size, actor attributes and ties for each of the networks associated for each of the 13
requirements in the project as well as the 5 dependent requirements.

How many people are typically working on/communicating about a require-
ment? In the project of 12, we found that all assignment and communication RCSN
involved about 5 and 7 people respectively, from both geographical locations. The
mean size of the assignment RCSNs was 5 people (standard deviation of 1) where
an average of 3.2 people were in Brazil and 1.7 were in the USA. The mean size
of the communication RCSNs was 7.8 people (standard deviation of 1.4) where an
average of 5.5 people were in Brazil and 2.3 were in the USA.

Are there more people communicating about a requirement than those assigned
to work on the requirement? In terms of amount of communication in each net-
work, we observe that the networks did not exhibit full connectedness though a
fair level of interaction. The average number of interactions between members in
the network was 38.4, and the average network density was about half of a fully
connected network: 0.43 (standard deviation 0.16). The project team completed the
requirements despite not communicating with every other person in the network,
suggesting that the team members were able to coordinate using methods other than
communicating.

We then compared the assignment and the communication networks to determine
if coordination involved only those individuals assigned to the requirement. We
found that communication during the development of a requirement, as reflected
in the communication network, typically involved more project members than
those allocated to work on the requirements through the project plan. These
emergent people were identified as providing expertise to those who were assigned
to the requirement. This expansion of the assignment network indicates a dynamic
evolution of membership and interaction in a requirement-centric team.
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Using actor properties (role and geographical location), we identified that a
developer was most likely to be emergent, though technical leaders and testers were
emergent as well. Across networks, on average 34% interactions were with emer-
gent team members and 43% took place across-sites. Although previous research
[3] identified that coordination requirements are dynamic and that often coordi-
nation needs are not matched by social interaction, our result indicates that the
actual communication network is larger than the technical dependency network as
reflected in the project plan. This implies that real-time awareness systems that aim
at improving coordination should consider providing up-to-date information about
those coordinating about a requirement to complement the information available in
project plans.

What information do members exchange in an RCSN? To obtain details about
the communication around requirements, we asked the participants to indicate the
reason for communication that they exchanged with each other member in each of
the communication RCSNs (communication of changes, coordination of activities,
requirement clarification, requirement negotiation, and implementation issues) and
constructed specific communication RCSN for each requirement and each reason
for communication.

By counting the ties in each of these topic-specific communication RCSNs we
identified that communication of changes and coordination of activities were the two
most frequent reasons for communication, followed by implementation issues. The
top type of communication with emergent members was coordination of activities,
followed by implementation of issues. Across sites, no single type of communication
stood out. These findings align with our earlier finding that the emergent members
are indeed involved in requirements-driven coordination [10]. The fact that the sec-
ond most-frequent topic for discussion with emergent members was implementation
issues corroborates with our finding that most frequent emergent members were
developers.

Are people with coordination needs coordinating in practice? To identify
whether project members who need to coordinate their work on a common
requirement do indeed engage in coordination, we computed the socio-technical
congruence between the assignment RCSN (reflecting coordination requirements
in the project) and communication RCSN (reflecting actual social interactions)
following the description in Section 3.3.

We identified that in average (mean) the 13 RCSNs are 0.73 congruent. For
the 13 requirements, there is perfect alignment between the technical dependency
and social interactions for 4 requirements, indicating that coordination among team
members happened according to the allocation planned by the project manager. For
the other 9 requirements however, the STC index is around 0.6 indicating that about
40% of links from the project plan are not realized by communication among project
members.

Following this analysis, we observed that the project was able to deliver each
of its requirements on time despite the fact that the communication networks
were not fully congruent with the assignment networks. Previous studies of socio-
technical congruence regarded the presence of gaps as detrimental to project
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success [14]. Our results call into question the necessity that each person in the
network needs to fill communication gaps according to the coordination needs.
Cost-benefit considerations include the fact that some communication gaps are too
expensive to fill especially in geographically-distributed teams, or may put undue
burden on team members to be practical to fill. The participants’ role – an actor
attribute in the network – may also enable us to further examine the gaps in the
communication-based network. By bringing socio-technical congruence to the
requirements level one can study the communication between different roles other
than developers: testers, business analysts, and project leaders can be incorporated
into the networks. One may find that some gaps are not necessarily detrimental to
project’s success. Interesting research questions include “Does always a require-
ments engineer need to directly communicate with coders?” Understanding which
gaps must be closed by direct communication or which gaps can be covered by
others, such as those in a broker configuration, is important to further the study of
requirements-driven collaboration.

Does distance correlate with communication in a RCSN? To analyze the rela-
tionship between distance and communication in this project we analyzed the actor
attributes (member’s geographical location) and the structure of the communication
RCSNs. We found a correlation between the geographic distance and the frequency
of communication (r2=0.426 and p<0.02), indicating that the co-located members
tended to communicate more frequently than with those at a distance site. This find-
ing provides implications for knowledge sharing in global teams. Decisions made
when members meet informally in the coffee room should be captured and shared
with the remote members in order to keep the entire team up-to-date with project
information.

Are there key members who mediate the flow of information about requirements?
Which are these members’ characteristics? Having identified the reasons for com-
munication in requirements-driven collaboration, we decided to identify patterns in
how the information was mediated in these networks. We analyzed information flow
in the communication networks of the five pairs of dependent requirements (recall
there were 25 networks in total). The case of dependent requirements in this project
provided us with the example of a communication network that was larger than
the one of a single requirement. For an idealized communication between mem-
bers working on a set of dependent requirements, information from each member in
one requirement network should be transferrable to all members in the dependent
requirement network. The longer the path used to transfer information, the higher
the chance for misinterpretation and loss of information. Therefore, short paths of
information-travel are of special interest in requirements management processes.
Here we investigated the presence of mediators of information exchange between
the two groups of project members working on two dependent requirements by
searching for brokers of information flow along paths of length two. A broker is
a member who mediates communication between a pair of members that would
otherwise be disconnected [18].

Our analysis identified brokers in each of the 25 networks of the five pairs of
requirements. We discuss three findings on brokerage.



www.manaraa.com

72 D. Damian et al.

First, brokerage was predominant in certain types of communication. We found
most brokers in the communication of changes, communication about requirements
clarifications and communication during coordination activities and almost no bro-
kers in negotiations and communication to synchronize code. This is not a surprising
finding since the activities of requirements negotiations or synchronization of code
may be less frequent during requirements-driven collaboration and also only involve
certain people.

Second, and perhaps one of the most interesting findings on brokers in our study
is that the most frequently identified broker in almost all pairs of requirements,
was located in the US (referred to as Jane). One would not be surprised that Jane
mostly communicated across distances given that the majority of project members
are in Brazil (9 out of 12), and because she played a key role in the project, as
a development leader. Given that geographical distribution introduces significant
communication problems [21], and that maintaining relationships across distances
known to be difficult [13, 16], one would expect that for more efficient communica-
tion she would have appointed or collaborated with a Brazil-based project member
or leader. Surprisingly, that was not our finding. Jane did not only communicate fre-
quently with the distanced members but was a broker for all communication types
among Brazilians. We would have expected to see this pattern with a Brazilian-based
project member. This can be explained by the familiarity of project members with
Jane given her role, and corroborates with evidence that familiarity has influence on
communication [10, 13].

Third, we found that knowledge and experience act as determinants for broker-
age. Additional contextual project information in our study revealed other factors
that relate to brokerage. Jane was part of four of the five pairs of dependent require-
ments. We believe that her knowledge and experience is a strong determinant for her
broker role in most networks. Jane has been a development leader in the company
for more than 7 years, and she acquired extensive knowledge of the project in her
role as coordinator of negotiation activities with the business partners. Her profile
fits what has been referred to as a specialist role and leads her to become a bro-
ker in the team’s communication. This finding implies that organizations planning
to establish a remote team with requirements-driven technical dependencies should
consider including experienced team members at the remote team as a mechanism
to mitigate the effect of distance on cross-site information flow.

Is there any relationship between frequency of communication and awareness in
requirements-driven collaboration? The relationship between communication and
awareness is important to study because one would expect that those who communi-
cate more frequently are also aware of relevant working context. The average density
of the awareness RCSNs was slightly lower than the average density of the commu-
nication networks – 0.43 (standard deviation 0.16) – suggesting that in this project
communication may not necessarily ensured awareness of who else was working on
the same requirements. We also conducted a QAP correlation test [24] to compare
the behavior of the communication and awareness RCSNs for each requirement in
the project. We used the data on frequency of communication and awareness of
what others are doing that is related to one’s work. We found a correlation index



www.manaraa.com

3 Requirements-Driven Collaboration 73

of 0.302 (p<0.05), which indicates that those who communicated more were also
more aware. When this is analyzed in light of findings that project members keep
aware of each other through regular meetings, or unplanned interactions, the consid-
erable reliance on verbal communication or local experts leads to research questions
for future work such as: What type of local or verbal interaction facilitates the
maintenance of this awareness? How can an awareness system replicate it in the
distributed interaction? More investigation is also needed into the impact of other
factors such as process or ethnic culture on awareness. While we only sought to cor-
relate awareness with communication in this study, it is also possible that awareness
was also maintained as a result of certain procedures for knowledge dissemination in
project meetings or may have been hindered due to different communication styles
across sites.

3.4 Implications

In this chapter we described a requirements perspective on collaboration in software
development and a structured approach to investigate coordination in requirements-
centric teams. A researcher using this approach can define network relationships and
actor attributes that apply to a specific case of interest. In our case study we chose
to investigate the alignment of those assigned to work on a requirement, and their
communication, as well as the effects of distance on communication and awareness.

Insights that we obtained about collaborative processes in software development
relate to the effect of distance on communication, the effect of awareness on com-
munication, properties of brokers in cross-functional teams and the effects of roles
on brokerage.

3.4.1 Research Implications: Future Applications of the Approach

To extend the study of requirements-driven collaboration, the approach described in
this chapter should be applied to examine different types of cases of requirements-
driven collaboration. In our study, we studied a small project with sets of two
dependent requirements. The approach can be applied to larger projects that con-
tain multiple dependent requirements. This will provide insight into the nature of
coordination over complex technical dependencies.

The study of requirements-driven collaboration can also include the analysis of
digital artifacts, as well as qualitative observations. These artifacts may include
email data, requirement databases, and source code that are related to a requirement.
An analysis using quantitative data would allow more accurate results regarding the
characterization of requirements-driven collaboration.

The effect of roles on network characteristics can also be studied in more detail.
Our study explored interactions between developers and testers, but our approach
allows one to study interactions that include project managers and requirements
analysts as well.
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3.4.2 Practice Implications: Designing of Collaboration Tools
to Support Coordination of Cross-Functional Teams

The paradigm of a requirements-centric team can be used to develop tools to sup-
port cross-functional teams coordinate effectively. Collaborative tools can also assist
managers who wish to monitor and improve coordination processes within their
organization.

A tool that can generate an RCSN automatically, perhaps using data-mining tech-
niques [2, 37] and automated requirement-traceability tools [4] can identify who
works on which artifacts, and trace these artifacts to requirements. Such a tool may
be able to extract data from issue-tracking repositories, requirement repositories,
mailing lists, and chat logs. These tools can be embedded into software development
and management tools to support:

• Broker identification. A tool can identify brokers mediating activity on different
requirements to make a project manager aware of who the critical people in a
project are. Resources can be provided to these persons so they can better do
their job. A backup person can be trained to cover for the broker when he is not
available.

• Expertise seeking. Generating an RCSN based on assignment and communica-
tion networks will indicate who is assigned to working on each requirement.
Thus, someone who is seeking help will be able to identify who works and
communicates on a particular part of the project and consult with that person
accordingly.

• Diagnosing coordination. A tool can compute social network properties and pro-
vide a manager with information to improve project performance. Measurements
include the time to complete a task and the number of changes made to an arti-
fact in a time period. Socio-technical congruence is an example of a technique
that can identify gaps in coordination. A manager can take actions to increase
the alignment between the social structure of the organization and the technical
dependencies among artifacts.
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Chapter 4
Softwares Product Lines, Global Development
and Ecosystems: Collaboration
in Software Engineering

Jan Bosch and Petra M. Bosch-Sijtsema

Abstract Effective collaboration in software engineering is very important and
yet increasingly complicated by trends that increase complexity of dependencies
between software development teams and organizations. These trends include the
increasing adoption of software product lines, the globalization of software engi-
neering and the increasing use of and reliance on 3rd party developers in the context
of software ecosystems. Based on action research, the paper discusses problems of
in effective collaboration and success-factors of five approaches to collaboration in
large-scale software engineering.

4.1 Introduction

Collaboration is perhaps the most important lever for achieving high quality, effi-
cient and effective software engineering practices and results in virtually any
software developing organization.1 Achieving effective collaboration, however, has
proven to be a major challenge in many organizations, resulting in failed or late
projects, products or systems not aligned to customer requirements, clashes between
the research and development (R and D) organization and the rest of the company,
etc. Although significant progress has been made over time, through, among oth-
ers, CMMI (Capability Maturity Model Integration), agile and iterative processes,
explicit software architecture management, and effective collaboration in large-scale
software development remain a challenge. For purposes in this paper we consider
collaboration effective if it generates minimal overhead for the organization while
avoiding the aforementioned problems.

J. Bosch (B)
Intuit Inc, Mountain View, CA 94043, USA
e-mail: jan@janbosch.com
1 Collaboration is defined as a recursive process where two or more people or organizations work
together toward an intersection of common goals.
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One can observe three trends that have surfaced over recent years that cause col-
laboration in software engineering to become significantly more complicated. The
first trend is the increasingly broad adoption of software product lines [1, 2, 6, 21].
Software product lines have proven to be perhaps the most successful approach
to improving productivity in software engineering; see, e.g., the product line hall
of fame [10]. However, transitioning an organization that has traditionally worked
in a product-centric fashion to a product line-centric way of working is a very
complicated change process. The primary reason for the difficulty in changing the
organization is because the product-line approach causes dependencies to be cre-
ated between software assets, and between teams responsible for those assets, that
did not exist earlier. In other words, an additional level of collaboration between
software engineering teams and organizational units is required.

The second trend is the globalization of software development [4, 9, 19]. More
and more global companies have either introduced several software development
sites or engaged in strategic partnerships with remote companies, especially in
India and China, due to several reasons; e.g., reduction of cycle time, reduction
of travel cost, use of expertise when needed, entering new markets, and respon-
siveness to markets and customers [5]. Global development has many advantages
but brings along its own set of challenges due to differences in culture, time zone,
software engineering maturity and technical skills between teams in different parts
of the world. Again, significant additional demands are placed on the collaboration
between teams in the organization. When teams need to closely cooperate during
iteration planning and have a need to exchange intermediate developer releases
between teams during iterations in order to guarantee interoperability, the coordi-
nation cost starts to significantly affect the benefits normally associated with global
development (cf. [11]).

A third important trend seen is the increasing adoption of ecosystems approaches
[15]. We define software ecosystem as follows: a software ecosystem consists of a
software platform, a set of internal and external developers and a community of
domain experts in service to a community of users that compose relevant solution
elements to satisfy their needs. Once a product or family of products has become
successful in the market, a significant business opportunity appears in the form
of third party developer and customer contributions to the product (family). This
requires that the internal product (line) software is converted into a platform that
is opened up to developers and development teams external to the organization. In
addition, this requires that customers buying a product that is part of the software
product line want to extend the functionality of the product with solutions available
in the community or developed by 3rd party developers after the product has been
deployed at the customer. Again, a significant additional demand is placed on the
ability of the organization and the ecosystem as a whole to collaborate effectively
as part of the software engineering process.

The trends discussed above have one important aspect in common: all increase
the amount of coupling between software assets as well as between organizational
unites. Below, we analyze the concept of decoupling in more detail. At the top
level, coupling (defined as the absence of decoupling) can be broken into two main
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categories, i.e., software asset coupling and organizational coupling. The former
category is concerned with the dependencies that exist between technology assets,
complicating their composition in planned and unplanned configurations. During
the 1970s, this was already studied in the context of structured design [23] and
during the last decade the research around software architecture has continued that
tradition. Organizational coupling is a reflection of the dependencies between soft-
ware assets in that the ability of teams to work independently is constrained because
of dependencies between the software assets that the teams are responsible for.

For both types of coupling, in many contexts the term decoupling is used as
the term of choice as it indicates that explicit steps have been taken to decrease
dependencies between software assets that naturally are tightly connected. Based
on our research, however, we take the position that the amount of coupling between
software assets is a consequence of the beliefs of the software architects designing
the system. Typically, the perceptions by the architects about what functionality is
expected to vary versus which functionality is not, causes certain dependencies to
be created without inhibitions whereas in other areas explicit decoupling techniques
are applied.

Architects often are a product of the development organization they grew up
in and, consequently, tend to assume a certain approach to large-scale software
development. This approach assumes certain operating mechanisms to be present
between different software development teams in order to govern their collabora-
tion. The challenge, however, is that due to the three trends discussed above, the,
often implicitly defined, approach to software development becomes increasingly
inefficient.

We address that concern, by explicitly defining five approaches to inter-team col-
laboration, which are based on action research of several companies. We focus on
which different collaborative approaches large-scale software development compa-
nies apply, when these approaches are most applicable and discuss some of their
challenges we found in the case companies. The different models show how compa-
nies organize large-scale software development, ranging from a highly integrated to
a fully decoupled, inter-organizational approach, i.e., integration-centric approach,
release groupings, release trains, independent deployment and open (eco-) system
development.

In the remainder of the paper we discuss these five approaches for collab-
oration in large-scale software as well as specific problems that arose within
these approaches. We conclude the paper with discussing in which context these
approaches would be most applicable.

4.2 Architecture, Process, Organization

Collaboration in software engineering is challenging and, as we discussed in the
introduction, there are several trends that are complicating collaboration even fur-
ther. In this section, we discuss the key challenges or problems that we have
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identified in our research. The problem statement is organized according to three
areas: (1) software architecture; (2) engineering processes and (3) the organization
(mainly research and development). This is related to Herbsleb et al. [8] who per-
ceives software architecture, plans (in our case organization) and processes as vital
coordination mechanisms in software projects in order to have effective communi-
cation between software development teams. In the industrial reality, these areas are
deeply interconnected, but we use this structure intentionally. Ideally, architecture
and technology choices are derived from the business strategy and should drive pro-
cess and tools choices. These, in turn, should drive the organizational structure of
the R and D organization [13, 14]. In industry however, the three areas mentioned
above are not always aligned. Often, the current organizational structure defines the
processes and through that the architectural structure for the product or platforms
and consequently constrains the set of business strategies that the company can
aspire to implement. When companies define new growth strategies, the business
strategy often collides with the existing organizational structure and consequently
the process and architecture choices. The paradox is that the software development
department still is responsible for releasing existing products and platforms while at
the same time, needs to embark on new business strategy implementation. Typically,
the architecture, process and organization approaches allow for too tight coupling
and the problems discussed later can almost always be addressed by increasing the
decoupling between architecture or organization elements.

Perhaps the key area for enabling effective collaboration in software engineer-
ing is software architecture. Collaboration often breaks down due to too many
unnecessary dependencies between components and the teams responsible for those
components. The dependencies not only need to be individually managed, but
the overall system complexity grows exponentially with a growing number of
dependencies.

The software architecture has a significant impact on the collaboration in the
software development organization responsible for a system or platform. However,
software architecture is only an enabler of effective collaboration; it does not define
the collaboration itself. The engineering processes, both formal and informal, define
the actual collaboration between teams and between individuals.

Next to the software architecture and processes, the organizational context
and structure are important for effective collaboration in large-scale software
development projects. Several aspects mentioned in literature are globalization
[9, 19] co-ordination of interdependencies, knowledge management (transferring
tacit knowledge into explicit knowledge for example [17]), and alignment of the
architecture, processes and the organization. In the next section, we discuss five
approaches found in industry according to the dimensions of architecture, process
and organization.

The research and approach presented in this paper is based on an action research
methodology applied by the authors in numerous software-intensive system com-
panies as well as in other industries. The action research method seeks to bring
together action and reflection, theory and practice, in participation with others, in
the pursuit of practical solutions to issues of pressing concern to people, and more
generally the flourishing of individual persons and their communities [20, 1].
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Table 4.1 Overview of case studies

Cases Company A Company B Company C

Product Embedded systems Consumer electronics Software products
Market Global Global North America, Asia
Type and size of

teams
Component teams

(between 10–30
team member)
Global teams
(between 10–30
team member)
Platform
organization (500+
members)

Division platform team
(150+ members)
Product platform
team (200+
members)
Product team (50+
members)
Global teams (30+
members)

Product platform
team (200+
members)
Product team (25+
members)

Method and duration
of study

Participant observer,
3 years

Participant observer,
3 years

Participant observer,
2 years

Data collection
methods

Interviews, workshops Interviews Participant
observation

We studied several R and D (Research and Development) units and software
development departments in three global companies (Fortune 100 and 500 com-
panies), who developed embedded products and software and service products for
different markets (European, US and Asian markets). In Table 4.1 we present an
overview of the cases investigated. Data was collected with help of semi-structured
and unstructured interviews (which were coded) and participant observatory meth-
ods. We applied a two-phase analysis method of first within-case analysis and later
on cross-case analysis method.

4.3 Five Collaborative Approaches

From all the units and teams we studied, at least two cases reported one of the five
approaches being applied for large-scale software development. These approaches
are discussed below. We organize the discussion around three dimensions: architec-
tural, process and organizational aspects of large scale software development and
conclude with success factors of the different approaches. In Table 4.2 we present a
summary of the five collaborative approaches.

4.3.1 Integration-Centric Development

Description: We found several firms applying an integration-centric approach, in
which the organization relies on the integration phase of the software development
lifecycle. During the early stages of the lifecycle, there is allocation of requirements
to the components. During the development phase, teams associated with each
component implement the requirements allocated to the component. When the
development of the components making up the system is finalized, the development
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Table 4.2 Collaboration models for large global software development

Approach
Integration-
centric

Release
grouping Release trains

Independent
deployment

Open (eco-)
system
development

Description Deep
interconnections
between
the elements
of the system.

Loosely coupled
subsystems
with
high internal
dependency

System
components
decoupled, but
deployment
coordinated

System
components
decoupled,
deployment
independent

Platform and
3rd part
solutions
decoupled and
deployed
independently

Architecture
challenge

Strongly
interconnected
architecture
– Tight
interdependency
and complexity
challenge

High integration
within release
grouping, high
decoupling
between
groupings
– Management
challenge of
decoupling
interfaces

High decoupling
between com-
ponents
– Teams
develop
independently,
while
maintaining
backward
compatibility

High decoupling
between
components
– Coordination
and execution
complicated

Highly
decoupled
with
sand boxes for
third party
functionality
– Security
models in
platform
architecture
challenge

Process
challenge

Continuous
coordination
between teams
– Lockstep
evolution
challenge

Continuous
coordination
within
grouping
– Variation
challenge
between and
inside release
groupings

Short iteration
cycles; only
coordination at
start/end
of cycle
– Teams
independent,
but all teams
need to release
as same
point in time

Each team
selects length,
frequency and
time of iteration
cycle
– Challenge
for high degree
of automation
and coverage of
testing

Each team
selects length
of iteration
cycle
– Certification
process
possible

Organization
challenge

High
interdependency
between teams
– Mismatch
architecture
and
organization
structure

Teams
responsible
for different
release
groupings can
be distributed
– Coordination
costs and
completion
time challenge

Distributed
teams within
organization
– Reduction of
coordination
costs

Distributed teams
within organi-
zation
– Coordination
performed by
software
architecture

Distributed
teams across
organizational
boundaries
– Challenge of
misalignment
business case
of provider
and external
developers

Success
factors

1. Release cycle
long.

2. Deep integra-
tion of compo-
nents

3. Co-location of
team

1. Geographical
distribution of
teams aligned
with release
groupings

2. High integra-
tion within
application
domain

1. Frequent
releases benefi-
cial for firm.

2. High level
of maturity
needed

1. Different
iteration cycles
for different
layers of the
stack.

2. High level of
maturity needed

1. Market
approach

2. Teams
highly
dispersed.

3. High level
of maturity
needed
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enters the integration phase in which the components are integrated into the over-
all system and system level testing takes place. During this stage, typically, many
integration problems are found that need to be resolved by the component teams.

If the component teams have not tested their components together during the
development phase, this phase may also uncover large numbers of problems that
require analysis, allocation to component teams, co-ordination between teams and
requiring continuous retesting of all functionality as fixing one problem may
introduce others.

In response to the challenges discussed above, component teams often resort to
sharing versions of their software even though it is under development. Although
this offers a means of simplifying the integration phase, the challenge is that the
untested nature of the components being shared between component teams causes
significant inefficiency that could have been avoided if only more mature software
assets would be shared. One approach discussed frequently in this context is contin-
uous integration [12], but in our experience this often addresses the symptoms but
not the root causes of decoupling.

Architecture: The architecture of the system or system family is typically not
specified and if documentation exists, the documentation is often outdated and plays
no role except for introducing new staff to the course grain design of the system.
Because of this, the de-facto architecture often contains inappropriate dependen-
cies between the components that increase the coupling in the system and cause
unexpected problems during development.

In our cases, we found a typical architectural challenge that seems to be prevalent
with this approach: the system architects failed to keep it simple. The key role of the
software architect is to take the key software architecture design decisions [3] that
decompose the system into consistent parts that can continue to evolve in relative
independence. However, as has been studied by several researchers, (e.g., [22]) no
architectural decomposition is perfect and each has crosscutting concerns as a con-
sequence. These concerns cause additional dependencies between the components
that, as discussed above, need to be managed and add to the complexity of the sys-
tem. Techniques exist to decrease the “tightness” of dependencies, such as factoring
out the crosscutting concerns and assigning them to a separate component or by
introducing a level of indirection that allows for run-time management of version
incompatibilities. In the initial design of the system, but especially during its evo-
lution, achieving and maintaining the absolutely simplest architecture is frequently
not sufficiently prioritized. In addition, although complexity can never be avoided
completely for any non-trivial system, it can easily be exacerbated by architects and
engineers in response to addressing symptoms rather than root causes, e.g., through
overly elaborate version management solutions, heavy processes around interfaces
or too effort consuming continuous integration approaches.

Process: Although most organizations employing this approach utilize tech-
niques like continuous integration and inter-team sharing of code that is under
development, the process tends to be organized around the integration phase. This
often means a significant peak in terms of work hours and overtime during the weeks
or sometimes months leading up to the next release of the product.
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A challenge we found was lockstep evolution. When the system or platform can
only evolve in a lockstep fashion, this is often caused by evolution of one asset
having unpredictable effects on other, dependent assets. In the worst case, with
the increasing amount of functionality in the assets, the cycle time at which the
whole system is able to iterate may easily lengthen to the point where the product
or platform turns from a competitive advantage to a liability. The root cause of the
problem is the selection of interface techniques that do not sufficiently decouple
components from each other. APIs may expose the internal design of the com-
ponent or be too detailed that many change scenarios require changes to the API
as well.

Organization: The development organization has a strong tendency to concen-
trate all-important work to one location. Even if the organization is distributed, there
is often a constant push to concentrate development and the team members in remote
locations tend to travel extensively.

One problem we found was a mismatch between architectural and organizational
structure. In one of the organizations, we were involved in transitioning the company
from a product-centric to a product-line centric approach to software development.
This requires a shared platform that is used by all business units. The organization,
however, was unwilling to adjust the organizational structure and instead asked each
business unit to contribute a part of the platform. Each business unit had to prioritize
between its own products and contributing to the shared platform and as a conse-
quence the platform effort suffered greatly. Although the importance of aligning
the organization with the architecture has been known for decades [7] in our case
studies the organizations violate this principle frequently.

Success factors: Although the integration-oriented approach has its disadvan-
tages, as discussed above, it is the approach of choice when two preconditions are
met. First, if conditions exist that require a very deep integration between the com-
ponents of a system or a family of systems, e.g., due to severe resource constraints
or challenging quality requirements, the integration-oriented approach is, de-facto,
the only viable option. Second, if the release cycle of a system or family of sys-
tems is long, e.g., 12–18 months, the amount of calendar time associated with the
integration phase is acceptable.

4.3.2 Release Groupings

Description: In this approach, the development organization aims to break the sys-
tem into groups of components that are pre-integrated, i.e., a release group, whereas
the composition of the release groups is performed using high decoupling tech-
niques such as SOA-style (Service-Oriented-Architecture) interfaces [16]. At the
level of a release group, the integration-centric approach is applied; whereas at the
inter-release group level coordination of development is achieved using periodic
releases of all release groups in the stack.

Architecture: In this approach, the architecture has been decomposed into its
top-level components, which are aligned with the release groupings. Often, the
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organization has run into the limits of the previously discussed approach and has
taken the action to decouple the top-level parts of the system.

In the typical scenario, the organization evolves from an integration-centric to a
release groupings approach. As the organization has allowed for many dependen-
cies between components, the management of interfaces between release groupings
often is insufficient. The definition of the APIs does not sufficiently decouple release
groupings from each other. APIs may expose the internal design of the release
grouping or are too detailed causing many change scenarios to require changes to
the APIs.

Process: Similar to the architecture, the process is now also different between
the release groupings, but the same as the previously discussed approach within
the release grouping. The decoupling allows the release groupings to be composed,
with relatively few issues. This is often achieved by more upfront work to design
and publish the interface of each release group before the start of the development
cycle.

In several of the cases that we studied, the organization failed to realize
that processes needed to vary between and inside release groupings. This lead
to several consequences, including features that cross release groupings tend to
be underspecified before the start of development and need to be “worked out”
during the development by close interaction between the involved teams. This
defeats the purpose of release groupings and causes significant inefficiency in
development.

Organization: As discussed in the description, the allocation of release group-
ings often mirrors the geographical location of teams and the definition of release
grouping interfaces the level of the geographical boundaries significantly decreases
the amount of communication and co-ordination that needs to take place and,
consequently, efficiency is improved.

In our cases, we found that working geographically distributed increases the
amount of time required to accomplish tasks due to cultural differences, time zone
differences and engineers need to spend more time in co-ordinating their work
across the globe. Engineers have to allocate more of their time for global coor-
dination, which makes development less efficient. Although the release groupings
approach addresses this concern to some extent, we found that the coordination cost
still is quite significant.

Success factors: The release grouping approach is particularly useful in situations
where teams responsible for different subsets of components are geographically
dispersed . Aligning release groupings with location is, in that case, an effective
approach to decreasing the inefficiencies associated with co-ordination over sites
and time zones. A second context is where the architecture covers a number of
application domains that require high integration within the application domain, but
much less integration between application domains. For instance, a system consist-
ing of video processing and video storage functionality may require high integration
between the video processing components, but a relatively simple interface between
the storage on processing parts of the system. In this case, making each domain a
release grouping is a good design decision.
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4.3.3 Release Trains

Description: In the third approach, the decoupling is extended from groups of com-
ponents to every component in the system. All interfaces between components are
decoupled to the extent possible and each component team can by and large work
independently during each iteration. The key coordination mechanism between the
teams is an engineering heartbeat that is common for the whole R and D organi-
zation. With each iteration, e.g., every month, a release train leaves with the latest
releases of all production-quality components on the train. If a team is not able to
finalize development and validation of its component, the release management team
does not accept the component. Once the release team has collected all components
that passed the component quality gates, the next step is to build all the integrations
for the software product line. For those components that did not pass the component
quality gates, the last validated version is used. The integration validation phase has
two stages. During the first stage, each new release of each component is validated
in a configuration consisting of the last verified versions of all other components.
Component that do not pass this stage are excluded from the train. During the second
stage, the new versions of all components that passed the first stage are integrated
with the last verified versions of all other components and integration testing is per-
formed for each of the configurations that are part of the product family. In the case
where integration problems are found during this stage, the components at fault are
removed from the release train. The release train approach concludes each iteration
with a validated configuration of components, even though in the process a subset
of the planned features may have been withdrawn due to integration issues between
components. The release trains approach provides an excellent mechanism for orga-
nizational decoupling by providing a heartbeat to the engineering system that allows
teams to synchronize on a frequent basis while working independently during the
iterations.

Architecture: The architecture now needs to be fully specified at the com-
ponent level, including its provided, required and configuration interfaces. No
dependencies between components may exist outside the interfaces of the
components.

In a web service-centric architecture inside an organization, the teams associated
with components develop independently while maintaining backward compatibility
for their provided interfaces. This allows each team to release at the end of the devel-
opment cycle and, after a, typically automated, testing effort the new component
versions are released at the same time.

Process: The key process challenges, as discussed above, are the pre-
development cycle work around interface specification and content commitment
and the process around the acceptance or rejection of components at the end of
the cycle. In addition, especially when the organization uses agile development
approaches, sequencing the development of new features such that dependent,
higher level features are developed in the cycle following the release of lower
level features allows for significantly fewer ripple effects when components are
rejected.
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The release train approach allows team to work independently from each other
during the development of the next release, but it still requires all teams to release
at the same point in time. The process of testing the new version of compo-
nents consists of two stages. First, each new version of a component is tested
in the context of the released versions of all other components. This verifies
backward compatibility. In the second stage, the new versions of all components
are brought together to verify the newly released functionality across component
boundaries.

Organization: As the need for co-ordination and communication between the
teams has been reduced and is much more structured in terms of time and con-
tent, the organization can be distributed without many of the negative consequences
found in the earlier approaches.

In one of the companies that we studied, this approach reduced the coordina-
tion cost quite considerably. Teams co-ordinated around the release of new versions
of components to plan for the next release. However, limited centralized plan-
ning was necessary. Instead, teams co-ordinated with each other at the interface
boundaries.

Success factors: The release train approach is particularly suited for organizations
that are required to deliver a continuous stream of new functionality in their prod-
ucts or platform; either because new products are released with a high frequency or
because existing products are released or upgraded frequently with new functional-
ity. The organization has a business benefit from frequent releases of new functional-
ity. Companies that provide web services provide a typical example of the latter cat-
egory. Customers expect a continuous introduction of new functionality in their web
services and expect a rapid turnaround on requests for new functionality. The release
train approach does require a relatively mature development organization and
infrastructure. For instance, the amount and complexity of validation and testing
that is required demands a high degree of test automation. In addition, interface man-
agement and requirements allocation processes need to be mature in order to achieve
sufficient decoupling, backward compatibility and independent deployment of
components.

4.3.4 Independent Deployment

Description: The independent deployment approach assumes an organizational
maturity that does not require an engineering heartbeat (a heartbeat in the engi-
neering system allows teams to synchronize on a frequent basis while working
independently during iterations) including all the processes surrounding a release
train [18]. In this approach, each team is free to release new versions of their
component at their own iteration speed. The only requirement is that the com-
ponent provides backward compatibility for all components dependent on it. In
addition, the teams develop and commit to roadmaps and plans. The lack of an
organization-wide heartbeat does not free any team from the obligation to keep
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their promises. However, the validation of a component before being released is
more complicated in this model as any component team, at any point in time, may
decide to release its latest version.

Architecture: Similar to the release trains approach, the architecture needs to
be fully specified at the component level. Architecture refactoring and evolution
is becoming more complicated to co-ordinate and execute on.

In one of the cases, the business realities forced some fundamental architectural
design decisions to be revoked and replaced with alternative solutions. This required
the independent teams to resort to significantly more coordinated ways of working
until the architecture had stabilized after several release iterations.

Process: The perception in the organization easily becomes that there no longer
is an inter-team process for development as any team can develop and release at their
leisure. In practice, this is caused because the process is no longer a straightjacket
but more provides guardrails within which development takes place. The cultural
aspects of the software development organization, especially commitment culture
and never allowing deviations from backward compatibility requirements, needs to
be deeply engrained and enforced appropriately.

As the process does not enforce joint releasing of components, any component
team can release at their own frequency and time. This requires an even higher
degree of automation and coverage of the testing framework in order to guarantee
the continued functioning of the overall system.

Organization: Similar to the release trains approach, the organization can take
many shapes and forms as long as the development teams associated with a
component are not distributed themselves.

As the process and geographic co-location of the development organization
is not longer something that one can rely on, the key organization principle is
now centered on the software architecture. Co-ordination is no longer process
and human-driven, but instead is performed via the software architecture. As a
consequence, where as team leads and engineers talk very little to other teams,
the architects in the organization typically increase their interaction to guide the
evolution of the architecture.

Success factors: The independent deployment approach is particularly useful in
cases where different layers of the stack have very different “natural” iteration
frequencies . Typically, lower layers of the stack that are abstracting external infras-
tructure iterate at a significantly lower frequency. This is both because the release
frequency of the external components typically is low, e.g. one or two releases per
year, and because the functionality captured in those lower layers often is quite sta-
ble and evolves more slowly. The higher layers of the software stack, including the
product-specific software, tend to iterate much more.

The key factor in the successful application of the independent deployment
approach is the maturity of the development organization. The processes surround-
ing road mapping, planning, interface management and, especially, verification and
validation, need to be mature and well supported by tools in order for the model to
be effective.
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4.3.5 Open Ecosystem

Description: The final approach discussed is an approach in which inter-
organizational collaboration is strived after. Successful software product lines are
likely to become platforms for external parties that aim to build their own solutions
on top of the platform provided by the organization. Although this can, and should,
be considered as a sign of success, the software product line typically has not been
designed as a development platform and providing access to external parties with-
out jeopardizing the qualities of the products in the product line is typically less than
trivial. Even if the product line architecture has been well prepared for acting as a
platform, the problem is that external developers often demand deeper access to the
platform than the product line organization feels comfortable to provide.

The typical approach to address this is often twofold. First, external parties that
require deep access to the platform are certified before access is given. Second,
any software developed by the certified external parties needs to get validated in
the context of the current version of the platform before being deployed and made
accessible to customers.

Although the aforementioned approach works fine in the traditional model, mod-
ern software platforms increasingly rely on their community of users to provide
solutions for market niches that the platform organization itself is unable to provide.
The traditional certification approach is infeasible in this context, especially as the
typical case will contain no financial incentive for the community contributor and
the hurdles for offering contributions should be as low as possible. Consequently,
a mechanism needs to be put in place that allows software to exist within the plat-
form but to be sandboxed to an extent that minimizes or removes the risk of the
community-offered software affecting the core problem to any significant extent.

The open ecosystem development model allows unconstrained releasing of com-
ponents in the ecosystem not only by the organization owning the platform but by
also by certified 3rd parties as well prosumers and other community members pro-
viding new functionality. Although few examples of this approach exist it is clear
that a successful application of this approach requires run-time, automated solu-
tions for maintaining system integrity for all different configurations in which the
ecosystem is used.

Architecture: The main architectural focus when adopting this approach is to
provide a platform interface that on the one hand opens up as much useful plat-
form functionality for external developers and on the other hand provides an even
higher level of quality and stability as the evolution of interfaces published to the
ecosystem is very time and effort consuming as well as constraining. In addi-
tion, security precautions have to be embedded in the interface to provide the
best defense mechanisms for accidental or intended harm to the customers in the
ecosystem.

Especially in the case where external developers can release directly to customers
without involvement of the platform company, the architecture has to be devel-
oped defensively at its external interfaces. In two of the cases that we studied, this



www.manaraa.com

90 J. Bosch and P.M. Bosch-Sijtsema

translated into the implementation of an elaborate security model in the platform
architecture to control access of external code in the platform.

Process: As the ecosystem participants are independent organizations, no com-
mon process approach can be enforced, except for gateways, such as security
validation of external applications. However, each limitation put in place causes
hurdles for external developers that inhibit success of the ecosystem, so one has to
be very careful to rely on such mechanisms.

In one of the cases that we studied, the platform company felt obliged to intro-
duce a certification process for externally developed code as the risk for customers
was considered to be too great.

Organization: The organization in this approach is best described as a networked
organization, i.e., the platform providing organization has a rather central role, but
the external developers provide important parts, often the most differentiating and
valuable parts of the functionality.

The key difference that the two of the cases that we studied struggled with is
that the business case for the platform organization is not necessarily aligned with
the business case of external developers. Although the platform company should
strive to achieve this situation, there is a natural tension in terms of monetization:
the platform company has to leave sufficient value in the ecosystem for external
developers to have an acceptable return on investment.

Success factors: The open ecosystem model is a natural evolution from the
release train and independent deployment models when the organization decides to
open up the software product line to external parties, either in response to demands
by these parties or as a strategic direction taken by the company in order to drive
adoption by its customers.

The key in this model, however, is the ability to provide proper architectural
decoupling between the various parts of the ecosystem without losing integrity from
a customer perspective. In certain architectures and domains, the demand for deep
integration is such that, at this point in the evolution of the domain, achieving suf-
ficient decoupling is impossible, either because quality attributes cannot be met or
because the user experience becomes unacceptable in response to dynamic, run-time
composition of functionality.

Two areas where this approach is less desirable are concerned with the platform
maturity and the business model. Although the pull to open up any software product
line that enjoys its initial success in the market place, the product line architecture
typically goes through significant refactoring that can’t be hidden from the prod-
ucts in the product line or the external parties developing on top of the platform
defined by the architecture. Consequently, any dependents on the product line archi-
tecture are going to experience significant binary breaks and changes to the platform
interface. Finally, the transition from a product to a platform company easily causes
conflicts in the business models associated with both approaches. If the company is
not sufficiently financially established or the platform approach not deeply ingrained
in the business strategy, adopting the open ecosystem approach fail due to internal
organizational conflicts and mismatches.
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4.4 Conclusion

Collaboration can be viewed as the most important lever for achieving high qual-
ity, efficient and effective software engineering practices and results in virtually
any software developing organization. Although collaboration has been compli-
cated, several trends increase the complexity of managing dependencies between
software development teams and organizations. These trends include the increasing
adoption of software product lines, the globalization of software engineering and
the increasing use of and reliance on 3rd party developers in the context of soft-
ware ecosystems. The trends share as a common characteristic that the coupling
between the software assets as well as between the organizational units is increased.
Consequently, decoupling mechanisms need to be introduced to address the increase
in coupling.

In this paper, we have discussed the challenges of decoupling approaches for
large-scale software collaboration from an architecture, process and organization
perspective. From extensive action research involving several cases, we found five
different approaches on a continuum ranging from low to high decoupling. We illus-
trated the challenges of these approaches in specific instances from the case study
examples. Our experience shows that these challenges are caused due to the appli-
cation of a collaboration model that is not applicable for a specific situation. In most
cases that we studied, significant problems were caused by the application of a col-
laboration approach that did not provide sufficient decoupling and could or were
addressed by the introduction of a more decoupled approach to collaboration.

The contribution of the paper is that it presents a clear overview of possible
collaboration approaches for large-scale software development and their particu-
lar challenges where surprisingly little literature exists in this area. With this paper
we give an insight in different decoupling approaches, their specific challenges and
their success factors (applicability).
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Chapter 5
Collaboration, Communication
and Co-ordination in Agile Software
Development Practice

Hugh Robinson and Helen Sharp

Abstract This chapter analyses the results of a series of observational studies of
agile software development teams, identifying commonalities in collaboration, co-
ordination and communication activities. Pairing and customer collaboration are
focussed on to illustrate the nature of collaboration and communication, as are two
simple physical artefacts that emerged through analysis as being an information-
rich focal point for the co-ordination of collaboration and communication activities.
The analysis shows that pairing has common characteristics across all teams, while
customer collaboration differs between the teams depending on the application and
organisational context of development.

5.1 Introduction

Agile software development is a group of software engineering methodologies, e.g.,
eXtreme programming (XP) [4] Scrum [26] Crystal [11] that became popular in the
early 2000s. Agile advocates claim to increase overall software developer produc-
tivity, deliver working software on time, and minimise the risk of failure in software
projects. Whilst its effectiveness and applicability remain uncertain, (e.g., [1, 19])
it is attracting increasing interest from the software engineering community, (e.g.,
[6, 24]). A summary of what is involved in agile software development is given in
this description by Cockburn [10: 29].

It calls for all the developers to sit in one large room, for there to be a usage expert or
“customer” on the development staff full time, for the programmers to work in pairs and
develop extensive unit tests for their code that can be run automatically at any time, for
those tests always to run at 100% of all code that is checked in, and for code to be developed
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in nano-increments, checked in and integrated several times a day. The result is delivered to
real users every 2–4 weeks.1

In exchange for all this rigor in the development process, the team is excused from pro-
ducing any extraneous documentation. The requirements live as an outline on collections of
index cards, and the running project plan is on the whiteboard. The design lives in the oral
tradition among the programmers, in the unit tests, and in the oft-tidied-up code itself.

Agile software development produces working software by technical practice
that also creates, and depends upon, intimate social activity which emphasises close
collaboration, co-ordination and communication within the development team. This
chapter explores the detailed nature of this social activity and its relationship to
and embodiment in the technical practice. The analysis is based on the results of
empirical studies we have carried out with six co-located mature XP software devel-
opment teams, covering a range of organisational settings, application domains
and development environments. Our approach to both data collection and analy-
sis is ethnographically-informed [25] which results in a validated account of the
detailed collaboration, co-ordination and communication mechanisms employed
and their relationships to each other and to technical practice. The approach is not
hypothesis-driven, but data-driven.

The analysis is in two parts. First, in section 5.3, we discuss and demonstrate
how the reality of agile technical practice involves collaborative and communica-
tive social activity. This is illustrated with consideration of two aspects of technical
activity which have key social characteristics: pairing and customer collaboration.
Second, in section 5.4, we analyse the critical work of co-ordination of collabora-
tive and communicative activity via the mechanisms associated with key physical
artefacts: story cards and the Wall. As background to this analysis, we introduce XP
as a social activity (section 5.1.1), and describe the fieldwork on which the analysis
is based (section 5.2). Following on from the analysis, we discuss the significance
of our findings in Section 5.5, and end with our conclusions in Section 5.6.

5.1.1 XP as a Social Activity

XP is commonly perceived in terms of technical practice. XP articulates its technical
practice as a set of mutually supportive components – practices – that include, for
example, small releases, simple design, testing, refactoring, pair programming and
continuous integration. In [3] 12 practices are listed, which are refined and extended
into 13 primary practices and 11 corollary practices in [4]. Beck states that the prac-
tices interact to mutually support one other: “Any one practice doesn’t stand well on
its own (with the possible exception of testing). They require the other practices to
keep them in balance.” [3: 69]. Consequently, any analysis and evaluation of one of

1 Time-boxed units of development lasting 1–4 weeks are called “iteration’s” in XP; time-boxed
units of development around four weeks are called “sprints” in Scrum.
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the XP practices has to take into account the manner in which it works in concert
with other practices.

As well as being technical practice, XP is also fundamentally a social activity,
with explicit values, such as communication and respect, and explicit principles,
such as humanity and reflection [4]. Interviewing Beck, Highsmith observes that
his “vision is about changing social contracts, changing the way people treat each
other and are treated in organizations” and quotes Beck’s response to an article that
attempted to revise XP: “I was furious that someone would strip out all of the social
change and still call it XP.” [16: 53]. Beck states that: “Just as values bring purpose
to practices, practices bring accountability to values.” [4: 14]. Such claims by XP
advocates as to the importance of social activity are sustained by several researchers,
(e.g., [9, 20, 31]), and practitioners, (e.g., [11, 21]).

The reliance of software engineering practice on purposeful social activity has
been recognised elsewhere, (e.g., [14, 30]), and so XP is not unique in this respect.
However the detailed nature of this social activity and its relationship to and embod-
iment in technical practice has not been investigated and analysed. In this chapter
we focus specifically on exploring and analysing XP’s collaborative, communicative
and co-ordinating dimensions. Our account of social activity will meet two impor-
tant requirements. First, it will be an account that attends to the technical as well as
the social. Second, it will be rooted in the reality of what practitioners do – XP in
the wild,2 so to speak – and that demands empirical fieldwork.

5.2 Fieldwork

Our findings represent a synthesis of results from a series of six empirical studies of
software practice. Our empirical studies were all fieldwork studies of teams based
in industry, engaged in software development, and using XP. Each team was mature
at the time of the fieldwork; that is, they had successfully transitioned to XP3 and
had been using all of Beck’s original 12 practices [3] for at least a year. Each team
consisted of software developers and other team members carrying out various roles
providing business, project management and specialist technical skills. The number
of developers in the team varied from 23 to 5 and the overall team size varied from
7 to 26 (see Table 5.1).

For example, Team C had two business development staff and a project manager;
another – Team E – had a project manager, two business analysts, a database admin-
istrator and a technical database user. The business settings of the six teams varied

2 cf. Edwin Hutchins’ Cognition in the Wild, MIT Press, Cambridge, MA, 1995.
3 Transitioning to XP is a process that can take place over a weekend or can require several months,
depending on a range of factors such as team size, organizational culture and team member attitude,
for example.
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Table 5.1 Team composition and business setting

Team Overall team size Number of developers Business setting

A 12 8 Web-based intelligent adverts
B 23 16 Document use in multi-author

work environments
C 26 23 Travel information web pages

& alerts
D 15 12 Large international bank
E 10 5 Large international bank
F 7 5 Large telecommunications

company

(see Table 5.1). Each team was physically co-located, essentially in a large,
open room.

Each team was studied for a period of a week (sometimes with additional spells of
observation, so that, in effect, iterations of more than a week were accommodated),
with further follow-up meetings to discuss findings. An ethnographically-informed
approach [25] was taken with the researcher immersing themselves in the day-to-
day business of XP development, documenting practice by a variety of means that
included contemporaneous field notes, photographs/sketches of the physical layout,
copies of various documents and artefacts, and records of meetings, discussions
and informal interviews with practitioners. Data was analysed ethnographically
and thematically, emphasising validation through the seeking of confirming and
disconfirming instances. The thematic, ethnographic analysis of the data was com-
plemented with an analysis from a cognitive dimensions [15] theoretical perspective
for some of the data [28]. An analysis informed by a distributed cognition theoret-
ical perspective, based on DiCOT (Distributed Cognition for Teamwork) [5] was
also employed for the data collected with three of the teams [27].

5.3 The Social in the Technical: Collaboration
and Communication

The Agile Manifesto [2] emphasises collaboration and interactions, and the reality
of XP software development offers evidence that this emphasis is borne out in prac-
tice. Observing practice makes it clear to the researcher that the work of an XP team
visibly and continually involves collaboration and communication – and that collab-
oration and communication are part of the technical business of creating working
software. In this section we explore and analyse this intimate relationship between
the social and technical via two key XP practices which illustrate this relationship:
pairing and customer collaboration. We find that pairing has considerable com-
monalities across the six teams, while the detail of customer collaboration varies,
dependent on the team’s specific situation.
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5.3.1 Pairing

By pairing we refer to the social activity of two team members (usually developers4)
sitting together and working. Pairing work encompasses several of the mutually
supportive components of technical practice: pair programming, test-first coding,
refactoring, simple design and continuous integration. That is, pairing does not just
involve two programmers together writing production code: it also involves test-
driven development, the refining of code structure, the removal of complexity as
soon as it is discovered, and the integration of new, or changed, code into the existing
code base via the 100% passing of automated tests.

The collaborative activity of pairing is dominated by communication: talk
between the two programmers, as they discuss, investigate, reason, understand and
develop the task at hand. Understanding is shared and affirmed (“So, are you saying
there’s an AddAllocation? Yes.”)5 and action is negotiated and carried out (“Why
don’t we do the simplest thing and put in a test... that’s easy to test.”, “It’s the
simplest thing and it’s compatible with refactoring.”), lack of progress is acknowl-
edged (“So, detecting everything else wasn’t a very good idea”) and completion
signalled (“I’ll commit that!”). Silence is also an accepted feature of the talk, as
code is being run through a series of tests, when an unexpected “red bar” (failing
test) is encountered or simply when thought is required.

In our fieldwork, the talks, and the talkers’ roles, were fluid depending on the
nature of the task, the developers involved and the progress being made. For exam-
ple, an experienced developer would pair with a less-experienced colleague so that
the experienced developer could gain familiarity with portions of the code base
that the less-experienced colleague had been working on. Alternatively, experienced
developers may pair where the portion of the code base being modified is particu-
larly complex or the required change is tricky. In particular, contrary to claims by XP
advocates, (e.g., Beck [3: 58]), there was no evidence of any clear split in roles, with
one developer controlling the keyboard and mouse to produce code while the other
was thinking more strategically. Rather, both developers would adopt these roles
interchangeably as the talk progressed and the possession and use of the keyboard
and mouse oriented to the talk (and not the other way around); this is confirmed
by others and a more detailed study of this phenomenon is reported in [7]. The talk
sometimes involved more than the two developers who were pairing, when someone
in another pair would overhear the talk and offer their clarification or understanding
(if it were part of the code base in which they had expertise). Indeed, the ability of
pairs to peripherally overhear each other was taken for granted as desirable and was
exploited to make progress for the team.

As well as involving developers, the talk also actively involved the code and its
various manifestations in terms of the windows and panes of the many development

4 We have observed pairings of a developer with a graphic designer, and a developer with a business
analyst.
5 Such italicized, bracketed material, in quotes, is an illustrative extract from our field notes.
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tools employed by the developers. The conversational turns of this third partner were
orchestrated by the developers as they summoned and dismissed panes, launched
tools, etc. The response of the third partner could – and would – shape the talk of
the developers, demanding close attention to what the code was expecting of them.
The code was a central focus in the talk.

Pairing is intimate and intense at both the social and technical level and this was
reflected in the developers’ organisation and management of their working environ-
ment in terms of time, relationships between individuals and space. The organisation
of the working day ensured that pairing did not take up much more than 5–6 hours
in the day – more than this was regarded as stressful and not sustainable. Similarly,
the period of pairing itself was actively managed, with recognition of the need for
breaks. In all our teams, pairs would swap around regularly – anything from half a
day to several days may be spent in one pair, depending on the functionality being
worked on. However, framed by this organisation and management, pairing was vis-
ibly a period where developers both expected and displayed great concentration and
focus.

Whilst pairing sessions themselves are intense and intimate, pairing as an ongo-
ing activity – on a daily, week-in, week-out basis – has its own intensity that
requires a level of maturity and social management from developers to accom-
modate inevitable clashes of programming style, attitude and personality. The
development teams studied recognised this in a variety of ways. The leader of one
team monitored and adjusted pairing to ensure active and effective engagement.
Another team likened the individual relationships of pairing to those of marriage
and sought to display all the skills of compromise, sensitivity and negotiation that
this required. And another team made use of a qualified social worker to help the
team understand the overall social health of its relationships. On a daily basis, many
of our teams kept a record of pairings, e.g. a pairing ladder that highlighted common
and uncommon pairings to make sure that rotation was evenly spread among team
members.

The organisation of the space of the working environment oriented to the nature
of pairing. This orientation ranged from the reconfiguration of desks for pairing to
the separation of space into an area for pairing, as well as areas for activities that
did not involve pairing, such as meetings, email and phone use.

Collaboration and communication occurs between pairs as well as within pairs.
Apart from the exploitation of peripheral awareness mentioned above, collaboration
and communication also occurs between pairs in the “stand up.” The stand up is
a daily meeting, taking place early in the day, before pairing begins. All develop-
ers attend and the meeting is short (no more than 15 min) – and people stand for
the duration. The meeting uncovers the collaboration and communication that must
take place across the developers in the coming day and initiates its co-ordination.
This is achieved by each developer quickly reporting in a three-part fashion: what
they’ve done since the last stand up that others need to know about, what they will
be doing next that others need to know about, and what if any obstacles are holding
them back (and that others can help with). The stand up emphasises reporting, and
prolonged discussion does not take place. As a result of what is reported, various
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discussions will take place during the day, although rarely in the setting of another
meeting.

5.3.2 Customer Collaboration

By “customer collaboration” we refer to the activity associated with the on-
site customer component of XP technical practice, where the customer generates
requirements, answers developers’ queries and provides understanding, sets priori-
ties, and provides feedback on iterations. Beck describes the on-site customer thus:
“A real customer must sit with the team, available to answer questions, resolve dis-
putes, and set small-scale priorities. By ‘real customer’ I mean someone who will
really use the system when it is in production.” [3: 60]. That is, in the ideal XP
world of Beck’s advocacy, the people filling the on-site customer role would be
co-located with the developers; would “speak with one voice”; would be potential
users of the system; and would be collaborative, representative, authorised, commit-
ted and knowledgeable. It is an accepted fact of XP practice that this ideal is rarely
realised for a variety of reasons: client organisations may be unwilling or unable to
spare people to become part of the development team; different customers may have
conflicting requirements; potential users of the system may not have the authority
to identify and prioritise system features, whereas decision makers may not under-
stand the needs of users; and so on. XP practitioners have recognised this fact and
devised approaches and methods to deal with the gaps between the ideal and the
reality, (e.g., [22, 23, 29]). These approaches and methods are contingent upon, and
are shaped by, the specific context and circumstances of the development team and
who is taking the role of the “customer.”

To demonstrate the nature of customer collaboration we briefly describe the
collaborative and communicative activity of each of our six teams, focussing on
interactions between the customer and developers.

The first setting involved a team where the on-site customer role was carried
out by marketing personnel who dealt directly with individual paying clients on
a regular basis. This direct involvement with the client brought great clarity and
authority to the development process. However, the role of marketing personnel
demanded that they respond quickly (minutes rather than hours) to requests from
clients. Usually, such requests necessitated consultation (and hence considerable
interaction) with developers. Much as the developers valued customer collaboration,
the frequency of such interruptions proved too distracting given the demands for
focus and concentration from the intensity of pairing. The solution explored was
that of an “exposed pair”: each day a pair of developers was identified who could
be interrupted if a client had an urgent request. Such a solution could only work
because of the shared understanding and responsibility created by other XP practices
including pairing.

In the second of our settings, the on-site customer role was carried out by project
managers who worked with marketing but were firmly part of the development
team. As such, they understood both the market requirements and positioning of
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the company’s various products and the needs of the software development that
would create those products. Project managers organised a considerable amount of
the detail of software development, as well as orchestrating and managing requests
from marketing. They therefore managed a complex set of interactions between
various groups and individuals. It was noticeable that pairing was more “interrupt-
ible” here: ad hoc discussions involving pairs and a project manager would naturally
occur and often would involve individuals from another pair, or testers, or the team
coach. Once the particular issue was resolved, pairing would resume and there was
no sense that what had occurred was an “interruption.” A variation of this occurred
with our third setting where the team were the basis of a small software company
with a flat organisational structure. Here, the on-site customer role was carried
out by the handful of individuals who were management with collaboration and
communication activities that were similar to those described above.

Our fourth setting concerns a team working in a large international bank, devel-
oping the software that would support the institution’s management of operational
risk. The management of operational risk was a new regulatory body requirement
and hence the details of the institution’s methodology were taking time to emerge.
The on-site customer role was carried out by two individuals with expertise in
the institution’s methodology but it was a new area and there were sponsors and
stakeholders, senior to the two individuals, who needed to finalise and agree the
methodology. As a consequence, requirements were often subject to change. In addi-
tion, the on-site customer was not the intended user of the various applications, and
the institution had a strong tradition of conventional, plan-driven software devel-
opment with all its expectations of how sponsors, stakeholders and users interact
with software developers. The on-site customer was also not co-located with the
developers although relatively close and in the same building. Importantly, the on-
site customer had significant responsibility for the overall success of the applications
under development. All of these factors made collaboration and communication par-
ticularly demanding for both the on-site customer and the developers. Both worked
actively to manage the relationship and overcome problems, and reported positively
on this aspect at a retrospective. Developers proactively involved the customer at a
range of opportunities, including planning meetings, seeking them out after a stand-
up, and ensuring their involvement in the team’s coffee breaks. Considerable effort
was expended in developing a shared understanding of the risk methodology via
adhoc meetings.

The other team in this same bank (our fifth team) were migrating a range of exist-
ing independent databases, each with their own, different schema, to one integrated
database, with its own, new schema. For them, the customer role was taken by a
technical database user who had many years’ experience with the existing databases.
He was co-located with the team, but not always available. Communication and col-
laboration here were complicated by the inclusion of business analysts who were
creating the new database schema, and hence needed to communicate with both
the customer and the developers. This required three-way communication and co-
ordination and a double stand-up meeting each morning – one only for developers
and one with developers, customer and business analysts. All of this was overseen
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by a project manager who was responsible for liaising with the offshore database
administrators and the team’s immediate line management.

Our final setting concerns that of a team working in a large telecommunications
company. The customer (a representative of a large department who were the main
stakeholder in the work) was not on-site and was located several hundreds of miles
from the developers. Interaction between the customer and the developers routinely
took place once a week via a telephone conference, with other calls during the week
as and when queries arose. A wiki was also used to share information. Despite the
customer and developers rarely meeting each other, developers reported that this
arrangement worked effectively because they had worked with the system under
development for several years and believed that they had a good understanding of
what was likely to be acceptable to the customer and what was not.

In summary, collaboration and communication with the customer is rich and var-
ied but also is highly situated. As such, and unlike pairing, it is difficult to identify
recurring collaboration activities and communication patterns. For example, it is
highly unlikely that the approach taken in our final setting would work so effectively
in the situation of our fourth setting.

5.4 The Social in the Technical: Co-ordination

We now consider how these collaborative and communicative activities in XP
practice are co-ordinated. Specifically, we analyse the co-ordinating role of two
key physical artefacts identified through our analysis: the Wall and story cards.
Figure 5.1 is an example of the Wall and two story cards from our fieldwork. The
“Wall” is our term but it is a term, and a role, that practitioners readily recognised
and agreed with in feedback sessions with them on our fieldwork. The Wall is an
example of the Informative workspace primary practice of Beck & Andres [4].
However, Beck & Andres describe the primary practice simply in terms of “An
interested observer should be able to walk into the team space and get a general idea
of how the project is going in 15 seconds”. They neither explicate nor advocate the
key, detailed co-ordinating role of the Wall.

5.4.1 Story Cards

Stories are the key unit of communication between the customer and developers and
are small units of functionality for which working code can be developed after a day
or maybe two days’ effort. Such fine granularity is facilitated by the identification
and refinement of “epic stories” and larger chunks of functionality [12, 13]. Jeffries
[18] suggests that there are three parts (the three “C”s’) to a story: the Card, the
Conversation and the Confirmation.

The Card: Stories are usually written on... index cards. Cards are small, physically indepen-
dent entities. Their size constrains the amount of information that can be written on it, while
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Fig. 5.1 An example of the wall and story cards from one fieldwork site

its independent nature means that it can be annotated and manipulated during meetings or
discussions.

The Conversation: Because the card can only hold a limited amount of information, the
development team has to talk to others in order to explore the detail of the story and to refine
their understanding of it.

The Confirmation: Testable and measurable user acceptance tests are agreed between the
customer and the development team, so that everyone concerned understands when a story
has been implemented successfully.

Each of these three parts has strong social characteristics that are significant in
co-ordination: the card’s independent, almost ubiquitous, nature; its role as a sum-
mons for shared understanding; and its insistence on an operational definition of
completion and closure.

Stories are usually thought of as being customer-initiated and as being about
customer-visible functionality. Our fieldwork revealed that stories can also be
developer-initiated and be about developer-required technical change such as refac-
toring. Furthermore, a story is often broken down into smaller units, known as tasks.
For example, in Fig. 5.1, the top card is a story card (“Show travel news headlines
and details for London”) and the bottom card is a task card (“Create WML travel
news pages”) which is one of the tasks of the story. Figure 5.1 does not show that,
in fact, the top story card is green and the bottom task card is white, so that the
use of different coloured cards indicates the level of granularity. The use of differ-
ent coloured cards here is deliberate and a common practice amongst teams. All of
the teams we studied made use of stories and all, with one exception, made use of
story (index) cards. The exception was a team which had moved from the use of
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index cards to an electronic, Word document. This Word document permitted con-
siderably more detail about what was required than would have been possible on an
index card and also included full details of the acceptance test.

At the start of an iteration, an iteration planning meeting is held to determine
which stories will be developed in the coming iteration. The cards that are being
considered for the iteration6 are often physically dealt on to the meeting table. The
planning meeting is collaborative with all team members and the on-site customer
being involved. Customers are asked to prioritise stories for the coming iteration,
and developers ensure that they have estimated how long each story will take and
that the cards are annotated with this information (such an estimate appears in the
bottom left corner of the (top) story card in Fig. 5.1). Working together, the team
determines how many and which stories will be included in the coming iteration.
Frequently, the physical space of the meeting table and the independent nature of
the cards are used to group and arrange cards to aid this process.

5.4.2 The Wall

Once the stories for the coming iteration have been determined they are taken and
arranged on the Wall. The Wall may be a convenient physical wall, as in the case
of Fig. 5.1, or it may be whatever is to hand. Examples from our fieldwork include
the vertical front surface of a collection of filing cabinets (see Fig. 5.2), a flip chart,
and a large (foldable and highly portable) piece of cardboard. That is, it matters to
teams that they have a Wall and they will create one in the most difficult of settings.
Even the team who held stories electronically had a cut-down version of the Wall.

The exact way in which each team arranged, and manipulated, story cards on
the Wall varied and we give here a simplified, but nevertheless, essential description
where the team worked in iterations of 3 weeks. The Wall is divided into three main
sections, one for each week of the iteration. The section for a week is sub-divided
into a “to do” area and a “done” area (see Fig. 5.3). At the start of the iteration, the
team considers how the cards need to be distributed across each of the 3 weeks and
carefully construct the Wall accordingly. Initially, only the “to do” area within the
Wall section for each week has any cards and the “done” area is empty. Within the
“to do” areas, cards are arranged so that task cards are with their associated story
card.

Following the first stand up of the iteration, some cards are removed from the “to
do” area of the first week – each card being taken by a pair of developers. The Wall
is annotated to indicate that a card has been moved (e.g., in Fig. 5.3 by the dotted
rectangle). In the case of the Wall of Fig. 5.1, a ghost of the moved card would be
drawn on the glass so that the card’s position on the Wall was preserved. The pair

6 Software is released after a series of iterations, typically every few months. There is a layer of
release planning, which helps scope out the functionality of an iteration that we have not touched
on here.
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Fig. 5.2 Filing cabinets used as the wall

Week 1 Week 2 Week 3

To do To do To do

Done 
Done Done

Fig. 5.3 A schematic of the wall shown in Fig. 5.1
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takes the card to a workstation, stick the card to the monitor, and engage in pairing.
Once they have produced tested, integrated working software, they annotate the card
with their initials, the actual time taken, and a large tick to indicate that it has been
completed and return the card to the Wall,7 placing it in the “done” area for the
week, erasing the annotation in the “to do” area that indicated the card was being
worked on by a pair.

Daily stand ups are conducted around the Wall, with individuals often pointing at
the Wall or taking cards from the Wall. By taking a card from the Wall, a developer
signals that they want to speak about the card and that they are exercising a form of
ownership8 over the work it represents. During the day, developers often look at the
Wall when considering progress, or the work left to be done.

At the start of the next week, the Wall is carefully studied by the team and rear-
ranged appropriately if the team has not completed all the stories initially allocated
to the week that has just finished.

This essential account makes it clear that the Wall and its associated cards are
not just visible signs of progress for visitors, managers and team members, as the
advocacy literature of Beck [3] or Cockburn [11] would suggest. Rather, they are
an information-rich focal point for the co-ordination of collaboration and commu-
nication. The Wall and its associated story cards work in a complementary manner.
The card is annotated in strict ways as it progresses through the development cycle,
but the card itself represents too small a chunk of development to stand alone – it is
important to see the wider overall picture of progress and activity. The Wall provides
this overview, and is designed spatially to carry extra information which comple-
ments the detail shown on each card. Much of the mechanics we have described –
card annotation, displaying stories on a wall, taking cards to a workstation when
implementation has started, etc – are focussed on co-ordination of the team mem-
bers’ efforts. However the way in which this co-ordination is achieved underpins the
collaborative and communicative nature of the team’s work and makes it possible
for such close collaboration and communication to be successful.

5.5 Discussion

In order to make technical progress, code must be implemented, and in order to
make that code useful, requirements must be understood through interaction with
customers. In XP, pairing supports the creation of code, and customer collabora-
tion supports understanding requirements. These two activities are clearly technical
practices, but our accounts also show the key facilitating role played by social
activity.

7 All actions that involve a card are carried out with a care that transcends its deceptive simplicity
and informality. Indeed, one team studied had an internal wiki entry entitled “The care and feeding
of story cards.”
8 Collective ownership is part of the technical practice of XP: “Anybody who sees an opportunity
to add value to any portion of the code is required to do so at any time.” [3: 59].
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A striking difference between pairing and customer collaboration is that pairing
involves repeatable patterns of collaborative and communicative activity that tran-
scends teams and their contexts, while interaction with the customer is very rich
and highly situated. In order for regular communication to take place between cus-
tomers and developers, the activity of pairing needs to be interrupted, and different
teams handle such interruptions differently. Teams also vary in terms of whether
and how often the customer attends the daily stand-up. As others have noted, the
role of customer is rarely (in our six teams – never) taken by the ideal individual
and the individual circumstances of that person affects the nature of collabora-
tion and communication. For example, how much authority the customer has in
making decisions; how much knowledge of the domain the customer has; where
the customer is located relative to the developers; and so on. All of these impact
the nature of the collaborative and communication activities required to support
technical development.

Much of the co-ordination activity supported by the Wall and the cards cap-
tures progress information rather than functional information. The Wall, supported
by annotations on the story cards, is good at showing an overview of the team’s
progress, but it is not good at showing an overview of the structure of the code, or
the functionality being offered. Instead, the functional attributes and structure of the
software is communicated, evolved and kept safe through social activities such as
pairing and customer collaboration as described above.

One consequence of this is that project management tools, commonly in use
within the software industry, need to link into the Wall and its mechanisms for cap-
turing progress. A tempting solution may be to digitise story cards and the Wall to
enable this linkage, but software tools based around the Wall and the cards must
support the facilitation, management and visibility of working activity offered by
their physical counterparts rather than just produce electronic versions of these arte-
facts, however sophisticated (see [8] for a compelling example of such an approach
to the computerisation of a workflow system in the print industry). Developments
such as that of Iterex [17] are promising. The Iterex system supports the creation of
story cards in accordance with Jeffries’ three “C”s’, the breaking down of a story
into tasks, the colour coding of stories/tasks and their arrangement and their printing
for use “as technology in their own right.” Importantly, the system links support for
story cards into the other activities of tracking iteration and release progress, visu-
alising project velocity, scope and burn down/up and planning future releases based
on past performance.

Another consequence of the Wall’s focus on progress and not functionality is
that the social activity underpinning the discussion, evolution and agreement of
functional development and progress is crucial to effective code development.

5.6 Conclusion

The social activity we have described and analysed – the collaboration and com-
munication of pairing and customer collaboration, and the co-ordination of the
Wall and its associated story cards – brings purpose and meaning to the technical
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practice of XP: to pair programming, test-driven development, refactoring, simple
design, continuous integration, and the on-site customer. Similarly, the technical
practice makes the activities of collaboration, communication and co-ordination
accountable: it is not just any (“warm and fuzzy”) collaborative, communicative and
co-ordinating activity that is acceptable but the detailed work, intimately connected
to the technical that our analysis has revealed. The creation of working software is
a socio-technical enterprise.
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Chapter 6
Applications of Ontologies in Collaborative
Software Development

Hans-Jörg Happel, Walid Maalej, and Stefan Seedorf

Abstract Making distributed teams more efficient is one main goal of
Collaborative Software Development (CSD) research. To this end, ontologies, which
are models that capture a shared understanding of a specific domain, provide key
benefits. Ontologies have formal, machine-interpretable semantics that allow to
define semantic mappings for heterogeneous data and to infer implicit knowledge
at run-time. Extending development infrastructures and software architectures with
ontologies (of problem and solution domains) will address coordination and knowl-
edge sharing challenges in activities such as documentation, requirements specifi-
cation, component reuse, error handling, and test case management. The purpose
of this article is to provide systematic account of how ontologies can be applied in
CSD, and to describe benefits of both existing applications such as “semantic wikis”
as well as visionary scenarios such as a “Software Engineering Semantic Web”.

6.1 Introduction

In software engineering ontologies are playing a minor role until now, although
they show similarities to conceptual models, which are broadly used in the software
engineering community. An ontology captures a shared understanding of a prob-
lem domain and is usually specified in a logical language by describing concepts,
relationships and additional logical axioms. Knowledge included in an ontology is
designed for both humans and machines. It can be integrated in development infras-
tructures and in developed software to support various software project activities.
One would therefore expect that ontologies are common in software engineering.
But for long, ontology engineering and software engineering have been present-
ing two parallel communities of interest with relatively little overlap. With the
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emergence of the semantic web [11], leading standardization organizations such
as the World Wide Web Consortium (W3C)1 and the Object Management Group
(OMG)2 took initiatives to better integrate both areas, by e.g., defining ontology
development platforms and investigating best practices for ontology-driven software
architectures. Novel applications of ontologies have been proposed, e.g., in Model-
Driven Development [24] or in Service-oriented Computing [48]. While some
approaches have also applied ontologies in Collaborative Software Development
(CSD), a general framework, which systematically describes how ontologies can
contribute to CSD does not yet exist.

CSD deals with coordinated software project activities that are characterized
by a form of distance (e.g., location, organization, time or culture) between the
stakeholders. Distributed development and collaboration in projects has increased
in recent years, which have lead to various problems. For example, several studies
have proven that distributed teams are less efficient due to lower communication
bandwidth, a lack of informal contact, shared context and awareness [33]. Hence,
making distributed teams more efficient is one of the main goals of CSD research.
To this end, ontologies – both as conceptual and technical artifacts – provide several
advantages that make them a primary candidate for addressing key CSD problems.

In the following, we give an introduction to ontologies from a Software
Engineering perspective (Section 6.2). We then identify key problem areas in CSD
where the application of ontologies promises advantages over traditional approaches
(Section 6.3). After that we present existing ontologies and their applications
(Section 6.4). In particular, we discuss how CSD can benefit from deploying so-
called “semantic wikis”, ontology-based development infrastructures as well as
the more visionary scenario of a “Software Engineering Semantic Web”. While
ontology-based approaches show a huge potential for improving some long-standing
problems in CSD, their large-scale applicability is partially still an open ques-
tion. We will discuss effort and process steps to support CSD scenarios in practice
(Section 6.5).

6.2 Foundations

The term ontology stems from the Greek nominative oν (on), which means being,
and λo′γoς (logos), which means study or science. In philosophy, ontology con-
cerns the study of being or existence. It seeks to define and describe phenomena,
properties and relations in every part of reality. Ontology is considered to be the
basic subject matter of metaphysics.

In the last decades, the term ontology has been transferred into the world of
computer- and information science and is gaining popularity ever since [47]. One of

1 W3 Consortium, see http://www.w3.org/2001/sw/BestPractices/SE/ODA/
2 Object Management Group, see http://www.omg.org/ontology/
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the most common definitions describes an ontology as a formal, explicit specifica-
tion of shared conceptualization [27]. Ontologies can be understood as models that
describe sets of objects, their relationships and constraints in a domain of interest.
This domain is either a part of reality or an entirely fictitious environment. The uni-
verse of objects and relationships is expressed in a declarative, formal vocabulary
that collectively constitutes the knowledge about the domain [25].

Models and abstractions are not new to software engineering. Bruegge and Dutoit
primarily understand software engineering as a modeling activity, where “engineers
deal with complexity through modeling, by focusing at any one time on only the
relevant details and ignoring anything else” [14]. Modeling has turned out to be an
essential activity in several stages of a software project. For example, requirement
engineers extract problem domain concepts based on interviews with customers and
problem statements. Experienced developers model well proven technical solutions
for particular problems as design patterns. Programmers draft complex algorithms
and data structures in pseudo-code or UML models. Models are used for communi-
cation (an engineer draws a UML diagram to explain a component), documentation
(technical documentation does not include source code but models) and develop-
ment (Code generation based on models). In the following section we describe the
main differences between ontologies, models and meta-models.

6.2.1 Ontologies vs. Models

The main difference between ontologies and models, such as entity-relationship
(ER) models or UML models, is Scope. Whereas models are usually intended for
one particular project, ontologies are targeting a much larger audience, which may
bridge across several projects and organizations. In that sense, ontologies represent
universally valid or widely accepted truth, i.e. knowledge, about a restricted domain.
It encompasses future projects and developments including potential, possibly still
unknown users. An ontology provides a domain theory and not the description of
plain data structures. For example identifiers in a database are used specifically for a
concrete system, while ontology resources are globally identified in the domain. The
second main difference that follows from the scope is the Open World Assumption.
In opposite to the Closed World Assumption used in common models, the absence
of a particular statement within the ontology means, that the statement has not been
made explicitly yet, irrespectively of whether it would be true or not, and irrespec-
tively of whether we believe (or would believe) that it is (or would be) true or not.
Other differences between ontologies and models are:

• Expressiveness: Languages for representing ontologies, e.g., OWL, are syntac-
tically and semantically richer than common modeling languages, e.g., UML.
[43].

• Target: An ontology describes the domain in a semi-structured way. An ontology
includes “tagged” text in natural language and can be processed by machines and
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read by humans. Common modeling languages either target humans, e.g., UML
notations, or machines, e.g., SQL and domain specific languages.

• Reasoning: If an ontology is specified in a logical language (e.g., OWL is based
on Description Logics), a reasoner can be used to derive implicitly defined knowl-
edge. It is then possible to automatically derive a hierarchy of concepts and
determine inconsistencies. This poses a significant advantage compared to stan-
dard modeling languages lacking expressiveness and formal semantics required
for automated reasoning.

• Integration and Interoperability: Ontologies are well suited to define semantic
mappings for heterogeneous data.

Meta-models are considered to be more related to ontologies [46]. However, their
characteristics and goals are different [43]. Meta-models aim to improve the rigor of
syntactically similar but semantically different models, while ontologies do the same
for semantically similar models. In addition, without an ontology, different knowl-
edge representations of the same domain can be incompatible even when using the
same implementation meta-model . Finally, while an ontology is descriptive and pri-
marily concerns a particular problem domain, a meta-model is generally considered
to be more prescriptive and primarily concerns a solution domain.

Software engineering has always been a complex endeavour – in terms of mas-
tering the problem domain as well as the software process itself. Not only modeling
is considered as an important activity but also providing meta-information which
describes the semantics of terms, data and functions. To this end, conceptual mod-
els, meta-models, and ontologies promote knowledge sharing and reuse in a human-
as well as a machine-understandable manner. However, ontologies offer distinct
advantages over conceptual models and meta-models [43, 23, 50]. Ontologies:

• Enable a new and effective way to reuse knowledge.
• Support a better understanding of a knowledge area.
• Separate problem domain knowledge from solution domain knowledge.
• Support an analysis of the structure of knowledge.
• Can be easily extended.
• Help in reaching a consensus on the understanding of a knowledge area.
• Share common information structure among people and systems.
• Enable a machine to use the knowledge in an application.

With respect to software engineering several advantages of ontologies can be
identified. First, ontologies can be used to represent a commonly agreed vocabulary
of concepts from the software engineering domain. For example, a top-level ontol-
ogy for software engineering could be based on SWEBOK [7]. Keeping in mind
that terms and expressions used to describe the software engineering domain are
often confusing and ambiguous for both humans and machines [50], the terminol-
ogy provided by an ontology adds clarity and facilitates a shared understanding.
Unlike conceptual modeling languages, ontology languages allow for defining
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precise logical statements that describe what these concepts are, how they are
related, and can be related to each other.

Ontologies do not only contribute to resolving conceptual ambiguities and cre-
ating a shared understanding among several participants. If knowledge is codified
in an ontology language it becomes machine-interpretable. Thus, a reasoner can
be used to infer new knowledge on both terminology and instances. In the soft-
ware process, for example, ontologies enable the exchange of information between
different software tools. Moreover, they could be an integral part of a software
development environment, e.g., to support knowledge management. Alternatively,
ontologies can also be employed in a software solution as the central part of the
application logic. A thorough classification of the various applications of ontologies
in software engineering can be found in [31].

6.2.2 Ontology Representation Languages

Popular ontology representation languages are RDF,3 RDF Schema and OWL.4

OWL (Web Ontology Language) is a recommendation by the World Wide Web
Consortium. This specification includes the definition of three variants with different
expressivity levels:

• OWL Lite intends to support classification hierarchies and simple constraints.
• OWL DL includes all OWL language constructs under some restrictions to

preserve decidability.
• OWL Full is based on a different semantics from OWL Lite or OWL DL. There

are no reasoners that support complete OWL Full reasoning.

OWL DL is often preferred [49], since it provides maximum expressivity,
while retaining computational completeness, decidability and the ability of practical
reasoning algorithms. All ontology languages share the following main components:

• Classes represent concepts, similar to types in object oriented modeling.
• Properties represent types of associations between concepts.
• Axioms represent formal sentences that are always true [27].
• Instances represent elementary elements or phenomena.

In RDF ontologies are represented as a set of statements in the form of subject-
predicate-object expressions. The subject denotes the resource, while the predicate
denotes traits or aspects of the resource and expresses a relationship between
the subject and the object. For example the notion “John has the role of project

3 Resource Description Framework, cf. http://www.w3.org/RDF/
4 Web Ontology Language, cf. http://www.w3.org/2004/OWL/
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John Project Manager
has the role of

Fig. 6.1 Subject-predicate-object expression

manager” is represented as a triple with the subject “John”, the predicate “has the
role of” and the object “Project Manager” (Fig. 6.1).

Ontology engineering is supported by a wide range of different tools, covering
aspects such as ontology editing, mapping, learning or reasoning [26]. Many of
these tools – such as the well-known ontology editor Protégé5 – are geared towards
the creation and maintenance of so-called heavyweight ontologies, which are used
to model complex domains such as medicine or biology. On the other hand, many
web-based applications are based on so-called lightweight ontologies which can be
created or maintained by end-users in a collaborative fashion.

6.2.3 Semantic Web

With the emergence of the Semantic Web vision in 2001 [11] ontologies have
been attracting much more visibility both in academia and industry. According
to W3C the Semantic Web is about two things: It is about common formats for
integration and combination of data drawn from diverse sources, while the orig-
inal Web mainly concentrated on the interchange of documents. It is also about
a language for recording how the data relates to real world objects. That allows
a person, or a machine, to start off in one database, and then move through a
continuous set of databases which are connected not by wires but by being about
the same thing. The Semantic Web effort provides standards and technologies for
the definition and exchange of metadata and ontologies. Available standard pro-
posals provide ways to define the syntax (RDF) and semantics of metadata based
on ontologies (OWL). There is an ongoing research covering privacy and security
issues.

6.3 Uses of Ontologies in CSD

The software engineering community has dealt with various aspects of collabora-
tion. In the earlier days, when programs became more complex, issues of manpower
and project coordination have been raised and discussed in order to meet quality,
resource and time contracts in large projects. Later researchers studied formal and
informal communication mechanisms in software projects to understand how devel-
opment teams work [35]. Recent years have further stressed these issues, driven by
an increasing distribution of software development endeavors.

5 Protégé: http://protege.stanford.edu/
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According to Merriam-Webster, collaboration means to work jointly together
with others. In software projects collaboration may have different dimensions:

• Collaboration takes place among various roles, e.g., users, developers or testers.
• Collaboration nature ranges from tightly interwoven to loosely coupled.
• Collaboration time may be asynchronous (as in teams spanning time-zones) or

highly synchronous (as in pair programming).
• Collaboration purpose might be required, optional, anticipated or unforeseen.

There are two main functions of collaborative work: coordination and knowledge
sharing. Both rely on communication as a fundamental building block. Coordination
describes the most crucial and fundamental functions of collaborative work. The
need for coordination typically stems from dependencies among tasks, which
require different persons to coordinate towards a common goal or a product [42].
A typical coordination problem in software development is the limited awareness
of other’s work [44]. Knowledge sharing denotes the dual problem of searching for
(looking for and identifying) and transferring (moving and incorporating) knowl-
edge across organization subunits [28]. Knowledge sharing needs are usually not
explicit, but defined by the gap between the background of individual develop-
ers. Personalization and codification are the core strategies for knowledge sharing
[19]. The personalization strategy primarily relies on personal communication to
share tacit knowledge, which only exists in the “heads” of individuals [19]. In
turn, the codification strategy targets explicit knowledge, which is captured in doc-
uments. In the following we give a systematic overview on uses of ontologies in
CSD. We discuss advantages of ontologies for supporting coordination and knowl-
edge sharing. Then we describe several to-be scenarios from the daily development
work.

6.3.1 Coordination

Awareness Creation: Finding the right balance between information overload and a
lack of awareness is a challenge in today’s software projects. Ontologies can enable
a more precise and efficient collaboration by including semantic annotations in both
system (e.g., test-case) as well as collaboration (e.g., email) artifacts. Interest groups
can be dynamically built by linking semantically annotated content to ontology-
based stake-holder profiles. Information is then shared precisely to stakeholders (in a
pull or push mode) depending on their interests. This will increase the effectivity and
efficiency of awareness creation measures and decrease the overwhelming amount
of communication and information overload, e.g., by sending every information to
a large static mailing-list [40].

Tool-Integration: Different project stakeholders use different tools, they are
familiar with. These tools use proprietary standards and models for managing infor-
mation. The same information object can be, e.g., called “issue”, “bug”, “bug
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report”, or “change request” in different tools. Ontologies facilitate the integration
of heterogeneous information and tools, in a syntactic (unified referencing, unified
property mapping) and semantic (synonyms, composites, specialization) manner.

Agility Support: A major challenge of today’s software projects is to increase
teams’ flexibility to deal with frequent changes in requirements and design, while
coping with coordination issues resulting from increased size and distribution of
projects. Due to their extensibility and support of the open world assumption,
ontologies supports project stakeholders to deal with change, if they are used to
manage project information. Ontologies also support advanced querying mecha-
nism, which enables the generation of check lists – a popular tool in agile teams.
In a project with frequent changes and releases, development-, test- and integration-
checklists, release notes as well as management reports (all inherently dependent of
different participants) can be automatically extracted if the corresponding informa-
tion is semantically rich. Participants can publish and register for information they
require, like RSS feeds. A query like “list manual tests that need to be conducted
for the next release” can be supplied by selecting fixed issues, affected components
and requirements and then retrieving related tests [40].

6.3.2 Knowledge Sharing

Research indicates that the absence of awareness about the existence of certain
knowledge (information access) and the low level of experience sharing (informa-
tion provision) are major blockers for knowledge sharing, especially in distributed
settings [20]. Given the existence of large amounts of reusable artifacts like speci-
fications, source code or binaries – in both corporate repositories and the Internet –
there is a large potential to improve the software development efficiency.

Information Access: The creation of large-scale information reposi-tories, such
as the Internet or corporate intranets has brought a large amount of information
for developers. However, due to constraints in time and mental capacity, it is hard
for humans to find information suitable for solving a given task. Thus, information
systems, which provide an intelligent information retrieval are desirable in CSD
[17]. Ontologies can facilitate information access for software developers due to
inclusion of semantics, reasoning ability as well as support for powerful querying
constraints, as Witte et al. illustrate for the case of software maintenance [51].

Information Provision: Even if large repositories are a good starting point for
supplying developers’ information need, information provision plays a major role in
increasing the effectivity and efficiency in CSD. Developers often avoid documen-
tation effort or do not address differences in background knowledge – especially
when providing information to distant team members. Examples are the rationale
behind certain decisions or experience sharing, such as the steps followed to fix
a particular bug. Ontologies can help to explicitly capture contextual information
(such as the system configuration when a bug occurred) and give developers a
more precise, unambiguous vocabulary to express certain information. Furthermore,
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certain contextual clues can be automatically derived from software artifacts by
using information extraction methods [13].

6.3.3 Development

The use of ontologies brings several benefits to the various activities and roles
involved in a software project.

Requirements Specification: Since software engineers are often no domain
experts, they need to learn about the problem domain from the customers. A
different understanding of the domain may lead to an incorrect and incom-
plete implementation. Gaining a shared understanding of the problem domain
is particularly challenging in multi-site development, where informal commu-
nication between the participants is much harder to achieve [45]. To this end,
ontologies can be used for the formal and unambiguous specification of require-
ments [37, 52]. Particularly concepts, relations and business rules of the domain
model can be expressed in ontologies with varying degrees of formalization and
precision.

Artifact Tracing: Project stakeholders consume and produce different artifact
types, using different vocabularies and languages. However, the information in these
artifacts is highly interlinked. On the one hand, technical concepts are referenced
in user manuals and managerial reports. On the other hand, domain concepts are
traced in design documents and source code documentation. Collaborating on cre-
ating and maintaining project documentation is a non-trivial task due to the various
backgrounds of participants. A key problem is that traceability between artifacts
is usually not sufficiently maintained. This becomes even more complex when
project participants are distributed, and the content creation context is not shared.
Ontologies can serve as a shared foundation for referencing, reusing and localizing
information in projects with a high degree of collaboration. They are well suited for
describing the semantic relationships between heterogeneous information resources,
including text documentation, email, notes, models and code. Ontologies can fur-
thermore be used for representing automatically recovered traceability information
during maintenance [55].

Component Reuse: Component documentation, if it exists, is insufficient to
describe all ways to reuse a component. Correct component integration, effective
work with powerful frameworks or successful usage of design patterns requires sig-
nificant background knowledge and experience about concerned components. Such
knowledge is scattered across different sources such as emails, forums, specifica-
tions or bug reports, especially in open source development. Ontologies can be
applied to addressing the component retrieval as well as the integration issues. First,
they enable to join information which normally resides isolated in separate informa-
tion sources. For example, format mappings can be defined to automatically create a
knowledge base from component descriptions, which minimizes the extra modeling
effort [29]. Second, ontologies may provide additional background knowledge (e.g.,
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about the properties of a certain software license) that enables non-experts to query
from their point of view (ask for a license that allows to modify source code).

Error Handling: Error handling is a highly collaborative endeavor. It is difficult
to define the exact scope and detail of an issue when it is reported for the first time. In
the case of semantically rich errors such as unexpected system behaviors or runtime
errors, the state of the practice is to ‘google’ for error message excerpts or keywords
describing the context, in order to find relevant hints how to handle that error. It is,
e.g., useful to find out where other developers looked for help while having simi-
lar problems. Thereby a main issue arises from the different contexts between the
developer who seeks for help, and the developer who provides knowledge about the
error situation. Typically these situations are never identical, resulting in a “context
gap”. Ontologies can mediate between the different contexts of developers handling
errors, since typically these situations are never completely identical.

Test Specification: Software tests represent an essential quality assurance mea-
sure. However, writing test cases is expensive and does no directly yield business
value. The derivation of a “suitable” test case demands both problem and solution
domain knowledge, which can be included in ontologies in a machine processable
format. Basic test cases can therefore be generated. A simple example for this would
be regarding cardinality constraints. Since those constraints define restrictions on
the association of certain classes, they can be used to derive equivalence classes
for testing. Formalisms like OCL that are specialized for such tasks already exist.
However, ontologies decrease the ambiguity of different used vocabularies and can
link to other project and domain-related information. Thus, testers – who are usu-
ally not as involved in the problem domain as the developers – can more easily
understand initial business requirements and derive suitable test cases.

6.4 Ontology-Based Tools in CSD

We introduce existing ontologies and discuss three ontology-based infrastructures
for collaboration tasks: “semantic” wikis, semantic development environments and
the more visionary scenario of a “Software Engineering Semantic Web”.

6.4.1 Ontologies

Ontologies have recently been applied for various Software Engineering tasks [31].
In this section, we describe selected ontologies which target collaborative software
development and tightly related issues.

6.4.1.1 Collaboration Ontologies

We briefly introduce a number of standard ontologies, which describe human
agents and their interactions. These describe general collaboration entities and form
“building blocks” for reuse by other ontologies.
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FOAF: The “mother” of all Semantic Web ontologies is the “Friend-of-a-friend”
vocabulary (“FOAF”) [1, 21, 2]. FOAF was created as one of the first application
examples of the Semantic Web and has been heavily reused by other ontologies. In
essence, the FOAF vocabulary allows to resemble social networks in a decentralized
manner. Therefore, every user creates his or her own FOAF profile, which speci-
fies basic personal information (such as address or employer) and allows to draw
“knows” relations to other persons. Once joined, all these little pieces of seman-
tic data allow to form a network of relationships among the individual persons.
As simple as the initial idea, the FOAF specification [2] is small, defining only
basic concepts such as Person, Group or Organization as well as various properties
of these entities such as name, knows, workplaceHomepage. The following listing
shows a snippet of FOAF data.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:PersonalProfileDocument rdf:about="">
<foaf:maker rdf:resource="#me"/>
<foaf:primaryTopic rdf:resource="#me"/>
<admin:generatorAgent rdf:resource="http://www.ldodds.com/foaf/foaf-a-matic"/>

</foaf:PersonalProfileDocument>
<foaf:Person rdf:ID="me">

<foaf:name>Hans-Joerg Happel</foaf:name>
<foaf:depiction rdf:resource="http://www.hjhappel.de/images/site/hj.jpg"/>
<foaf:phone rdf:resource="tel:+49-(0)-721-9654-814"/>
<foaf:workplaceHomepage
rdf:resource="http://www.fzi.de/ipe/eng/mitarbeiter.php?id=418"/>
<foaf:knows>
<foaf:Person>
<foaf:name>Walid Maalej</foaf:name>
<foaf:mbox
rdf:resource="mailto:maalejw@in.tum.de"/></foaf:Person></foaf:knows>

<foaf:knows>
<foaf:Person>
<foaf:name>Stefan Seedorf</foaf:name>
<foaf:mbox rdf:resource="mailto:seedorf@uni-mannheim.de"/>
</foaf:Person></foaf:knows>

</foaf:Person>
</rdf:RDF>

SIOC: While FOAF has its merits as a pioneering work and a ground vocabulary
for persons and organizations, it lacks more sophisticated concepts such as roles
and concepts for further interactions and specific domains. One particular extension
of this kind is the vocabulary for “Semantically-Interlinked Online Communities”
(SIOC) [3, 6, 5]. SIOC extends FOAF and adds concepts and properties to describe
interactions and content in online communities such as message boards, wikis and
weblogs. Figure. 6.2 depicts example concepts such as Forum, Item, Role, Space
and Thread. The vocabulary allows site owners and tool providers to semantically
annotate their content and thus exchange and join data across different sites.

6.4.1.2 Software Development Ontologies

While maintaining software and handling errors, several kinds of related infor-
mation exist without an explicit connection. This is problematic since a unified
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Fig. 6.2 General overview of SIOC [5]

view could avoid redundant work and speed up problem solving. A bug resolution
process for example usually involves the discovery and reporting of a bug (often
into a bug tracking system), subsequent discussion inside a developer group, and
finally changes in the code that resolve the bug. While the discussion on the mailing
list and the code changes are clearly triggered by the bug report, their relation is not
explicit and often kept separately. Since it is difficult to manage larger amounts of
bugs without all existing context information, the lack of tool support lead to delays
in bug fixing and duplicate work or discussions.

Dhruv: Dhruv [8, 9] is a semantic-web enabled tool which aims to assist the soft-
ware maintenance/bug resolution process, by recommending relevant information
during bug inspection. Therefore, Dhruv is integrated in a web-based bug track-
ing system and displays recommendations in a special sidebar. Recommendations
may involve source code files, mailinglist discussions or similar bug reports (c.f.
Fig. 6.3). Dhruv does not operate on a special user profile. The context for recom-
mendation is always the bug report for which related information is retrieved. This
information is included automatically when creating the report page.

DOAP: The “Description of a Project” ontology (DOAP [22]) extends the FOAF
ontology to describe software projects. Core concept is the software project with
various properties such as category, license and bug tracking URL. Making this
information available in a standardized way provides several benefits. Dameron
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Fig. 6.3 Basic concepts of the Dhruv ontology [8]
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describes how to automatically update the Protégé ontology editor and its plug-
ins [18]. The author uses an extension of the DOAP ontology and a python script
that retrieves the most recent version number and a download URL by calling a web
service that does reasoning. The basic advantage of an RDF-based solution in con-
trast to e.g., describing the download information in XML is exten-sibility. Using an
XML schema, all plug-in providers must provide their data in the specified format.
In order to stay compatible to the update script, changes would have to be done cen-
trally and distributed to all plugin providers. Using an RDF ontology, every provider
is free to add or subclass concepts from the initial version without being at risk to
become incompatible.

6.4.2 Semantic Wikis

Wikis are easy to use, web-based tools for collaborative knowledge acquisition and
sharing. The first wiki, initiated by Ward Cunningham in 1995, served as a dis-
tributed knowledge repository for design patterns. Since then, software engineering
remains an important application domain for wikis [38]. Wikis are used by Open
Source communities and by enterprises such as SAP, Novell, and Yahoo for pur-
poses as diverse as knowledge transfer, technical documentation, quality and process
management, release planning, and error tracing [10, 41, 4].

However, for specific, well-structured content, traditional wikis often reach
their limits with their core functionality. While the content of a wiki page might
provide structure and meaning to a human reader, it does not possess any machine-
interpretable semantics. These limits are best described by an example: In a software
project, one wiki page is mantained for every entity, e.g., a stakeholder, a use case,
or a software component. The hyperlinks between pages then describe relationships
between entities. For example, a component will realize one or more use cases.
However, the meaning of the hyperlink remains implicit and can only be interpreted
by humans, but not by the wiki engine itself. Also, the type an entity (or page) is
not specified in a traditional wiki. Thus the set of all use cases and all components
cannot be automatically derived.

The lack of structure in traditional wikis is tackled by a completely new class –
so-called Semantic Wikis. They allow to impose a knowledge model (i.e., ontology)
onto previously unstructured page content. In a semantic wiki, the embodied knowl-
edge can be structured by annotating pages and hyperlinks with types. In our
example, all pages describing a use case are of the type Use Case which is also
an ontology concept (see Fig. 6.4). Similarly the hyperlinks between the pages will
carry a semantic meaning in many cases. The link between Component X and Use
Case 1 describes the relation realizes. Likewise the links between Stakeholder S and
Use Case 1 and Use Case 2 describe the relation participatesIn.

Semantic wikis provide various advantages for software projects. First, they
enable an incremental formalization of underlying knowledge across various soft-
ware engineering activities. Unlike a development or a collaboration infrastructure
with a fixed scheme (e.g., a bug repository), semantic wikis support both the



www.manaraa.com

122 H.-J. Happel et al.

Stakeholder Stakeholder Stakeholder

Ontology

Wiki Pages

Stakeholder

Customer X

Use Case Component

Component 1

Component 2

Use Case 1

Use Case 2

realizesparticipatesIn

realizes
participatesIn

participatesIn

realizes

realizes

realizes

has_type has_type

has_type

Fig. 6.4 Pages and hyperlinks in a semantic wiki correspond to ontology concepts and properties

evolution of content and schema. Furthermore, by adding semantic meaning to
pages and grounding it in the ontology, the wiki content becomes machine-
interpretable and can be enriched with further background knowledge. For example,
the question Which stakeholders use component X? can be now formulated as a
semantic query and automatically answered by the wiki engine. Thus, semantic link-
ing capabilities enable a better traceability between different software engineering
entities [40].

Prototypes of semantic wikis have been realized in a number of projects, either
by implementing a completely new wiki engine or by extending an existing one.
Although the core idea of all semantic wikis is to provide a machine-processable
knowledge model described in the wiki pages, they vastly differ in terms of
required user experience and knowledge representation languages. For example, the
Semantic MediaWiki project adds some extra syntax for the semantic annotations to
the wiki markup language [36]. It therefore realizes an open approach where a user
can optionally add semantic markup. In other approaches, every page is interpreted
as an entity so that the wiki’s semantics are defined in a more rigorous style [32].

6.4.3 Semantic Development Environments

Integrated development environments (IDEs) have become powerful tool suites to
support developers work. However, several authors have noted, that state-of-the-art
IDEs – while well supporting individual developers’ tasks – neglect the collabora-
tive nature of software development [16]. A number of recent tools and scientific
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prototypes has addressed this issue. The IBM Jazz toolsuite [16] addresses the col-
laboration needs by integrating communication and awareness functionalities into
the development environment. Integrating collaboration brings the payoff of reduced
friction in the development process, a greater sense of context, and immediate
traceability between collaboration artifacts and system artifacts. A similar approach
presented by Bruegge et al. is focussing on the modeling activities of software engi-
neering [15]. The Mylyn Eclipse plugin [34] addresses the problem of information
overload faced by developers in a single development environment. The core idea
is, that not all classes in large software projects are relevant for working on a given
task. Thus, mylyn identifies and hides or blurs classes which are less relevant. Mylyn
assumes that developers are sequentially working on fine-grained tasks (e.g., fixing
a bug), which affect only a subset of source code files. It maintains a simple model,
assigning each source code file a “degree-of-interest” value in a given task context
which is calculated from the previous modifications of a particular code elements.
Mylyn allows developers to share their task context, which helps to reproduce the
working context.

However, these approaches lack a deeper understanding of developer’s actual
activities. Jazz for instance offers several collaboration services, but maintains
no internal model about actual collaboration needs and opportunities. Similarly,
mylyn has no deep understanding of the semantics of developer’s interactions, but
aggregates all interactions into a single “degree-of-interest” value.

Thus, while already useful, these approaches only partially ease the mental bur-
den of developers. As Zeller lined out [54], IDEs bear large potential for automated
support in tasks which machines can do better than human developers. Examples for
such tasks are the creation of developers’ work logs, awareness about other devel-
opers’ activities in distributed development, management of dependent libraries or
navigating information in complex projects [30].

Two major building blocks are required to support such scenarios. First, IDEs
need a more precise understanding of developers’ activities (e.g., developing vs.
debugging), semantics of a code change (e.g., changing an interface vs. changing
its implementation), interdependencies between different software artifacts and the
organizational structure of a development team. Parts of these issues are already
addressed by ontologies mentioned in Section 6.4.

The actual interpretation and data creation has to be carried out by developer
observation frameworks, which record the actions of a developer and infer higher
level activities. While mylyn can be seen as a low-level developer observation com-
ponent that allows to derive a very particular piece of information (artifacts related to
a task), the TeamWeaver project6 realizes a more generic and extensible framework
with an implementation for the Eclipse IDE [39].

With these two building blocks, IDEs can become not just “collaboration-aware”,
but even “context-aware”. A concrete example is context-aware recommendation,
which proactively provides developers with pieces of information (e.g., about the

6 http://www.teamweaver.org
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new version of a component or a bug fix) when they need it. In existing software
engineering recommendation systems such as CodeBroker [53] or Hipkat [17] rec-
ommendations have to be triggered by the user and are thus not proactive, since
these approaches are based on a simplified model of developers’ actions.

Ontologies can contribute to the realization of intelligent, context-aware devel-
opment environments by providing a backbone model for describing meaningful
entities and activities from the development domain. Filled by observation tools, this
semantic information can be applied to support developers in tasks, which machines
can do better than human developers.

6.4.4 Software Engineering Semantic Web

The idea of a “Software Engineering Semantic Web” takes several concepts from
semantic development environments further into a web-scale environment. One core
premise of CSD is the fact, that major systems can not be built “from scratch” by a
single organizational entity. Systems of reasonable size and complexity build upon
powerful platforms, reuse existing libraries and have to interact with the “outside
world”. Accordingly, developing and maintaining these systems implies coordina-
tion activities with various actors. Coordination tasks can span the awareness of
other developers’ activities, the observation of new releases and problems in used
libraries or the negotiation of system requirements. While such activities can not
be totally avoided in a complex development ecosystem, we argue that the coor-
dination activities as such can be supported in a much better and deeper way. For
example, a developer monitoring the release status of an external library needs to
find out the exact name and version of the library used, locate information about the
release status (e.g., on a project webpage) and then monitor the status of this library
(e.g., by reading a mailing list). Thus, developers are forced to carry out a lot of
tedious “micro-level” activities which serve towards fulfilling an actual development
goal.

The vision of the “plain” Semantic Web (Section 6.2.3) is driven by a very sim-
ilar observation. As in our developer’s example, people have to deal with lots of
information in their daily life. Scheduling a doctors appointment involves draw-
ing information from various sources, selecting a suitable doctor (e.g., based on
geographical and/or administrative preferences) and finally negotiating a suitable
date from both parties’ calendar [11]. Again, people are burdened with a num-
ber of little nasty tasks to carry out a rather simple activity. The Semantic Web
assumes that in many of such situations, electronic information already exists, which
could be the basis for computer-based support. However, this information is typ-
ically created and stored by different actors in a decentralized way – and thus
heterogeneous and often not machine-readable. The Semantic Web provides means
(including standards and according tools) to allows these actors to formally annotate
their data, such that agents can interpret it to carry out certain tasks. An important
aspect is, that the formal ontology languages for the Semantic Web do not enforce
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homogeneity, but instead provide means for data mapping and integration. A
Software Engineering Semantic Web is a Web, in which agents fulfill useful
development tasks based on semantically enriched data. We argue that software
engineering is an adequate domain for this vision, since knowledge in software
projects is typically scattered across various people, systems, formats and spaces.
Especially in large projects, development information is distributed and heteroge-
neous. This is, a.o. due to reusing libraries and frameworks, which are provided by
other organizations.

The Software Engineering Semantic Web has not yet been realized. In the fol-
lowing we sketch a possible realization based on various roles and actors involved
and reference initial building blocks.

We start with components providers, whose libraries and frameworks are used for
building larger applications. These actors typically offer additional services to the
actual software, such as notifications about updates, security issues or code exam-
ples. This project data is often available in a structured or semi-structured format.
Projects hosted at large Open Source development portals such as SourceForge offer
various kinds of information, e.g., about software releases or bugs. Commercial
vendors also have same information in their “hidden web” of intranets and com-
pany networks. This structured data can be easily exposed in a semantic way
[12], and already several platforms have adopted this practice.7 Open Source
projects would profit from this practice since the availability of “clean” project
information is an important criterion for trust in a project and its success. For com-
mercial providers, offering structured, machine-interpretable data streams could be
an additional service which generates additional revenue.

Second, information provision and collaboration aspects have long been
neglected [16] from tool developers. One reason is the heterogenity of such data,
which makes it hard to integrate it into tool workflows. However, extending tools to
consume and produce semantic data (c.f. Section 6.4.3) can give them a competetive
advantage. First, the easy integration of relevant external information helps to make
developers more productive and causes less interruptions. Second, semantic inter-
operability improves the tool-spanning workflow of developing artifacts and thus
eases the integration of the overall development landscape.

Finally, application developers will benefit from improvements in their develop-
ment environment. Time-consuming tasks will be simplified and novel, advanced
development scenarios will possible to support (c.f. Section 6.3). Semantically-
empowered IDE’s can blend relevant external information into the current context
of a developer. This includes data from the project’s own development sever, sta-
tus notifications of remote co-workers or new versions of depending libraries.
Developers can thus get a much more precise and complete overview of infor-
mation related to their current task. Developers can also benefit from additional
features such as an easy sharing and access to others’ development experiences or
consistency checks – e.g., concerning license compatibility, bugs or security issues.

7 see e.g. http://doapspace.org/
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While some of these applications are promising, the realization of a Software
Engineering Semantic Web depends on three major factors: the existence of seman-
tic metadata, the existence of suitable ontologies and finally the existence of
powerful tools for leveraging this data to provide new services. Formal metadata is
already widely available due to the large amount of structured and semi-structured
data in software development. Publishing this data in a semantically meaningful
way thus primarily requires suitable ontologies and mappings between the different
sources.

Creating these ontologies does not have to be difficult. In many cases it is
sufficient to transform existing metadata schemas in a suitable ontology representa-
tion. Further steps as integrating and mapping heterogeneous schemas can then be
adressed by various means. Tool-vendors or interested parties can build and offer
baseline ontologies. First examples are already available as described in Section 6.4
or under development such as the Baetle project8 covering issue tracking data.

It seems as if tools are still the major bottleneck for a Software Engineering
Semantic Web. So far, only research prototypes embrace semantic metadata in a
large way, while state-of-the-art development tools are not yet adopting it. However,
the increasing maturity of the Semantic Web tool landscape and the huge potential
of easily available metadata in the software engineering domain make us confident
that tool vendors will integrate according features in their programs.

The Software Engineering Semantic Web enables scenarios described in
Section 6.3, which cannot be realized simply by a semantic wiki or a semantic devel-
opment environment. A Software Engineering Semantic Web is nothing more than
an interconnection of distributed semantic development infrastructures and tools.
These tools are clients for consuming semantic data and realizing appropriate assis-
tance functionality, but they also support developers in sharing information into
a Software Engineering Semantic Web. While it may take time to let this vision
appear in a large scale, we believe that an increasing number of actors in software
development ecosystems will embrace semantic metadata.

6.5 Conclusion

In this chapter, we provided an introduction into knowledge representation with
ontologies and existing as well as visionary applications in CSD. Since CSD is
much about managing implicit and explicit dependencies among developers and
development artifacts, the semantic expressivity of ontologies adds key benefits to
existing work practices.

Although ontologies have been around for many years, several factors promote
their increasing adoption. First, with a number of W3C standards such as RDF
and OWL issued in recent times, tools and methodologies for creating and man-
aging ontologies have matured. Second, the success of the Web enables developers

8 http://code.google.com/projects/baetle
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to collaborate in a richer and more dynamic way, instead of working in de facto
isolation.

Both factors contribute to a slow but growing number of semantic approaches
addressing CSD issues. However, we have to keep in mind that the creation and
maintenance of ontologies is a challenge of its own, which needs to be justified
by efficiency gains. Proving such efficiency gains is sort of “a chicken/egg prob-
lem”, since the success of several visionary scenarios depends on their adoption.
What is clear, is that there will not be a single “CSD-ontology” satisfying all needs.
Applications of ontologies in software development can be manifold and so the
resulting ontologies will differ in expressivity, scope and purpose.
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Part II
Tools and Techniques

André van der Hoek

Tools have served a critical role in collaborative software engineering throughout.
They are used to automate tasks that otherwise humans would have to do by hand;
tasks that tend to be repetitious, labor-intensive, tedious, or difficult to perform.
Their use has made it possible to scale the size of software development teams and
the projects in which they engage. The kinds of extremely large projects undertaken
today just would not be possible without, for instance, the concurrency management
facilities provided by SCM systems. Collaborative software engineering tools have
also afforded new ways of working. The open source movement in its current scale is
only possible due to the internet, CVS, mailing lists, and online project management
sites such as Source Forge.

In the early days of software engineering, tools focused strongly on the man-
agement of the artifacts that were produced. Version control systems are the chief
example, automating tracking of changes to (code) artifacts in order to maintain a
historical record as well as to enable concurrent access to the same code base by
multiple developers at the same time [6]. Shared editors emerged relatively early as
well, built on the paradigm of instant sharing of edits instead of following the lock-
edit-merge cycle promoted by version control systems (e.g., MMM [3]). A wealth of
policies has emerged since that attempt to codify and support various intermediate
levels of concurrent access and sharing among groups of developers [4]. Primarily,
these policies target changes to code or textual artifacts; artifacts that are stored in
binary represent a challenge since they require turn-key diff and merge algorithms
to be inserted into the generic collaborative work infrastructure.

Another class of tools has focused on supporting the overall process of collabo-
rative software engineering. Early incarnations of these tools aimed to address two
issues: (1) planning, by assisting project managers in creating GANTT charts and
other such schedules of work, and (2) workflow, by controlling the flow of doc-
uments across tasks and people throughout an organization. A host of specialized
workflow and process management tools emerged, including high-end environments
that supported reflective processes and even multiple versions of the same process
to be active at the same time [1]. More recently, we have witnesses a reversal from
specialized process environments upon which the remainder of the development
tools rest to environments in which pre-determined, or at least highly constrained,
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processes are built in. IBM’s Jazz, for instance, is an extension to Eclipse that
provides an editor-centric environment that revolves around a limited, more agile
process [7]. This trend has also allowed tools to start presenting task-centric advice
to developers; for instance, Mylyn reduces the set of visible entities in the devel-
opment environment to those that pertain to the current task and/or change at
hand [8].

Another category of tools focuses on communication among collaborating par-
ties. A number of these communication tools are general, as developers rapidly
adopted e-mail, newsgroups, and instant messaging for their purposes. More spe-
cific communication tools were also developed. One of the most important such
tools have been bug trackers (also called issue trackers). These tools provide a cen-
tral location where all bugs and feature requests are collected and from where they
can be assigned to individuals to address them in the code base. Recently, a host
of awareness tools have emerged, aiming to inform developers of important issues
needing their attention. Palantír [11] CollabVS [5] and FastDash [2] are examples
of such tools, all aiming to keep developers abreast of the efforts of their colleagues
and especially of those efforts that may lead to potential merge issues later on. At
the same time, some communication tools focus on the question of who to talk to
pertaining to certain issues. In particular, expertise finding tools assist developers in
identifying those developers who have expertise over a certain portion of the code
base [9, 10].

Today’s tools face several key challenges. First and foremost is the fact that soft-
ware increasingly is being developed in a distributed and even decentralized fashion,
with multiple organizations responsible for different parts of the software system or
different tasks with respect to the development process. Collaboration support, thus,
must extend across separately-developed components, geographical boundaries, and
independent teams. This brings with it entirely new concerns in terms of privacy and
intellectual property issues, as well as the need to respect different work practices
that are being bridged. Second is the issue of cross-life-cycle support. Most collab-
oration tools still focus on a single phase of the life cycle, often just programming,
ignoring other phases. Much still is to be gained with advanced tool support in this
regard. Third is the issue of control, particularly when it comes to process tools. For
many years, the tools placed the organization in control, enforcing its processes and
practices on the individuals. Recent tools, recognizing that individuals are resource-
ful and effective in dealing with unforeseen problems, place some of that control
back in the hands of the individuals. Permeating all three issues is a key emerg-
ing consideration underlying most of today’s work in the collaborative software
engineering tools arena: tool solutions must be developed keeping in mind that the
ultimate solution is one of “tool plus person”, that is, tools in and of themselves do
not lead to changed practices, it is in how individuals work with and leverage tools
that new practices arise. It is this social-technical interplay that ultimately decides
upon a tool’s success in improving collaboration practices.

The next five chapters provide a sampling of today’s research into collabora-
tive software engineering tools, ranging from theoretical expositions, to new tools,
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to concerns regarding how to evaluate collaborative software engineering tools, to
overviews of the present state of the art. Together, the papers provide a mere glimpse
of the depth and breadth of research activities taking place at this moment in time
with respect to tools, as it is a very active and engaged community.

Chapter 7 by Dewan provides an overview of a broad variety of collaborative
software engineering tools (over 50), grouped into two categories. The first category
of tools distinguishes itself by aiming “towards being there”, that is, these tools over-
come geographical and other boundaries by providing technological solutions that
mimic co-located collaboration as closely as possible. The second category of tools
aims “beyond being there”, introducing functionality that is generally not available
in co-located collaboration yet useful in supporting the collaborative effort. Through
a historical and incremental analysis of how new tools fix deficiencies with previous
tools, a holistic perspective emerges.

Chapter 8 by Sarma, Al-Ani, and co-authors introduces a host of collaborative
software development tools that were developed under the continuous co-ordination
paradigm, blending formal and informal co-ordination techniques to enable effective
and spontaneous co-ordination actions to take place. The paper also highlights the
difficulties involved in evaluating collaborative software engineering tools. Short of
real-world use, compromises must be made. Using the DESMET evaluation frame-
work, each of the tools in the continuous co-ordination suite is evaluated according
to its objectives.

Chapter 9 by Murta, Werner, and Estublier examines the state-of-the-practice in
software configuration management and places it in the context of five critical col-
laboration needs: communication, awareness, co-ordination, shared memory, and
shared space. For each of these, the paper first discusses how the need is supported
by the current generation of (commercial) software configuration management tools,
and then presents key ongoing research towards improving how each need is sup-
ported. The paper concludes with an outlook at future trends, including challenges
introduced by such advances as model-driven engineering and cloud computing.

Chapter 10 by Lago, Farenhorst, and co-authors addresses a different artifact than
source code, choosing to focus on architectural knowledge management through the
GRIFFIN Collaborative Virtual Community. The paper introduces a set of collab-
oration scenarios among architects as they are located at different locations and
exhibit different backgrounds and roles, and uses the scenarios to define a con-
ceptual model for a virtual community of architects. Key is that the scenarios and
community support both formal and informal interactions, a necessity to provide
broad and effective support.

Chapter 11 by Nakakoji, Ye, and Yamamoto examines the topic of expertise com-
munication and its role in collaboration. Through a carefully thought out theoretical
perspective, it particularly identifies expertise communication as a different form
of communication from co-ordination communication, with its own challenges,
demands, and needs. It then provides a set of nine key design principles to be fol-
lowed when designing and implementing expertise communication functionality in
developer-centered collaborative software development environments.
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Chapter 7
Towards and Beyond Being
There in Collaborative Software Development

Prasun Dewan

Abstract Research has shown that the productivity of the members of a software
team depends on the degree to which they are co-located. In this chapter, we present
distributed tools that both (a) try to virtually support these forms of collabora-
tion, and (b) go beyond co-located software development by automatically offering
modes of collaboration not directly supported by it.

7.1 Introduction

A variety of novel tools have been created to allow software developers to collab-
orate with each other. This chapter classifies them based on whether they try to
(a) make software developers feel they are co-located, or (b) provide features not
found in co-located collaboration. The result is an overview that relates concepts
not linked together earlier, which include not only research tools but also studies
that motivate/evaluate them. Each of the surveyed works is described by showing
how it builds on or overcomes problems of other research addressed in this chapter.
By focusing only on the differences among these works, the chapter covers a large
variety of concepts, from over fifty papers. It is targeted mainly at the practitioner
familiar with the state of the art, rather than the researcher working on improving
current practices. Nonetheless, the interrelationships among the referenced works
should be of interest to everyone. In particular, a new researcher in this area should
be able to find holes in existing designs and evaluations.

Naturally, not all aspects of all research in collaborative software development
are covered, or all viewpoints taken. By focusing on the “being there” and beyond
themes, this discussion concentrates on the nature of the collaboration rather than
the form of software engineering such as design and inspection. It addresses tools
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and related studies, rather than collaboration theories, cultural issues, organizational
structures, studies that have not yet informed tool design, and other aspects of col-
laborative software development. Finally, it is intended to be a broad overview of the
area, identifying relationships among diverse classes of research, rather than among
different approaches within a particular class such as expert finders.

It begins by identifying the various degrees of physical co-location that have
had an impact on software productivity. It then presents virtual channels that allow
distributed developers to simulate these forms of co-location, and go beyond.

7.2 Productivity vs. Co-Location Degrees

Complex software must be developed collaboratively. However, Brooks [4]
observed that adding more people to a software team can result in disproportion-
ate increase in coordination cost, thereby reducing the productivity of the individual
programmer. Surveys have found that, on an average, 50–80% of software devel-
opers’ time is taken by communication [2, 44] and they are interrupted every three
minutes [24].

These results seem unintuitive for two reasons. First, modular decomposition
of software products should isolate software developers. Second, documentation
should reduce the need for direct communication. However, studies have found
that the approaches of documenting and partitioning are far from a panacea. Curtis
et al. [10] found documentation is problematic for several reasons. Requirements,
designs and other collaborative information keep changing, making it hard to keep
their documentation consistent. After finishing an activity, software developers often
choose to proceed to the next task rather than document the results of what they have
done. People may deliberately hide information for career advancement. Sometimes
there is conflicting information from different stakeholders that needs to be resolved
through meetings. For example, for a defense project, the following stakehold-
ers may provide different requirements: the champions responsible for getting the
project approved the procurement office responsible for setting and monitoring the
goals, the commanders, and the actual operators of the software to be created by the
project.

Perry et al. [43] found that modularizing a project into multiple files does not
isolate programmers. They studied Lucent’s 5ESS system and found a high level
of concurrency in the project – for example, they found hundreds of files that were
manipulated concurrently by more than twenty programmers in a single day. Often
the programmers edited adjacent or same lines in a file. They found that the more a
file is accessed concurrently, the more the numbers of defects in it, despite the fact
that state-of-the-practice versions control tools were used. There are many possible
reasons for this correlation. After checking-in a file, a programmer may remember
that some necessary change was not made, and to correct this mistake, may change
the file in-place without creating a new version [26]. Programmers concurrently
working on different private spaces (created from the same base) often race to finish
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first to avoid having to (a) deal with merging problems [26] and/or (b) re-run test
suites on the merges [13, 14]. Programmers may not look at the documentation of
previous versions to understand the code they are modifying [27]. Indirect conflicts
on related files are not caught by differencing or file-based locking. Few people have
a sense of the overall picture or the broad architecture [10, 27] which is required to
reduce indirect conflicts.

All of the studies above assumed that team members are co-located in a single
building and work from separate cubicles. If coordination/communication is really
an issue, as these studies indicate, then distributing the team should further aggravate
this problem and radically co-locating it, that is, requiring all team members to work
in a single war-room, should reduce it. Two independent studies have found that this
is indeed the case – the productivity of distributed teams was lower than that of co-
located teams [32] and the productivity of radically co-located teams was higher
than that of co-located ones [53].

The study comparing co-location and distribution [32] found that in distributed
team development, it was harder to find people, get work-related information
through casual conversation, get access to information shared with co-located co-
workers, get timely information about plan changes, have clearly formed plans,
agree about plans, be clear about assigned tasks, and have co-workers assist with
heavy workloads, beyond what they are required to do. Interestingly most people
thought that they gave help equally to local and remote collaborators but received
more help from local collaborators. The study found that the perception of received
help was the only factor that correlated with productivity.

The study on radical co-location [53] found two main factors that made it work
better. First, there was continuous face-to-face communication among team mem-
bers. Second, they were able to overhear and see each other’s activity, which allowed
them to solve their problems and interject commentary, clarifications and correc-
tions. On the other hand, the study found that people sometimes wanted private
spaces, and there was concern about distraction and getting individual recognition
for work.

In radical co-location, even though the members of the team work in one room,
they use different workstations. Higher physical coupling is achieved in pair pro-
gramming, wherein two programmers sit next to each other, sharing a workstation
and working on a single task, with only one programmer providing input to the
workstation at one time. One study comparing pair and individual programming
produced several interesting findings. It found that in the pair programming case
(a) 80% of programmers felt higher satisfaction, (b) more alternatives were explored
and fewer lines written, and (c) there was more team building as programmers
were involved with each other and enjoyed celebrating project-completion together.
Even more interesting, it found that pair programming took more person hours
but resulted in fewer bugs [55]. Assuming certain times for fixing and detecting
bugs, the study established that pair programming actually increases the productiv-
ity of an individual programmer. This result seems to contradict Brooks’s law [4]
which says that adding more programmers to a late project makes it later. The two
results are not, in fact, contradictory, because Brooks assumed programmers were
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co-located but in separate cubicles. Thus, he did not consider radical co-location or
pair programming.

The above studies, together, show that (a) communication and coordination are
problems in team software development, (b) the more the physical coupling between
members of a team, the less the severity of these problems. The moral, then, seems to
be to increase the co-location degree among team members to the maximum degree
possible.

Other work has shown that this conclusion is not necessarily correct. Nawrocki
and Wojciehowski [39] found pair programming often took about twice as many
person hours, though the pair-programming times showed less variance. Ratcliffe
and Robertson [45] found that programmers with high (self-reported) skills did not
like being paired with those with low skills.

More interesting, recent work has proposed a variation of pair programming,
called side-by-side programming, wherein two programmers, sitting next to each
other and using different workstations, work together on the same task [7]. A study
showed that, in comparison to pair programming, side-by-side programming offers
significantly lower completion times [40] while slightly reducing the understanding
developers have of code written by their partners. It also found that developers who
liked working together on a single task preferred side-by-side programming to pair
programming.

The more complicated argument, then, seems to be that there are both benefits
and drawbacks of tight physical coupling. Its strength is that multiple program-
mers can communicate with each other about a problem and possibly discuss it.
Its weakness is that it reduces concurrency even when communication/discussion
would be useless. More important, tight coupling may not always be preferred or
even possible. For team members who are geographically dispersed, a closer phys-
ical coupling is not an option. Even when a team is co-located, because of lack of
war-rooms in the workplace and the concerns mentioned above regarding radical co-
location, team members may work in different rooms/cubicles. Pair programming
is not widely practiced currently, and not always the most preferred or productive
coupling, and even if it were, different pairs would have looser physical couplings.
Thus, the communication/coordination problems of these couplings remain.

One way to address these problems is to provide virtual channels that simulate a
variety of physical couplings, making the team members feel that they are together
in a single building or room, or sitting in adjacent seats, or sharing a single worksta-
tion. This is consistent with the idea of taking steps towards virtually “being there.”
A complementary solution is to support virtual channels that reduce collaboration
problems existing in all forms of co-location. This is consistent with the idea of
virtually going “beyond being there” [34].

Examples of both kinds of channels exist in traditional – that is, state-of-
the-practice – tools. For example, IM systems provide the “towards being there”
functionality of synchronously chatting, and version control systems provide the
“beyond being there” functionality of asynchronous merging. The fact that, despite
the pervasiveness of these tools, communication/coordination is still a major issue
in team software development seems to indicate that there are opportunities to
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significantly improve existing collaboration channels. Several research efforts have
explored such opportunities. The remainder of this chapter surveys some of the
concepts identified by these research efforts, and experience with these concepts.

7.3 Towards Being There

7.3.1 Virtual Co-location and Radical Co-location

Co-location, especially radical co-location, allows developers to easily communi-
cate to the whole team events of shared interest. When the team is distributed,
several approaches have been devised and used for conveying this information.
A version control system provides a way for distributed programmers to formally
communicate some of this information through check-in comments. Grudin and
Poltrock [28] advocate the use of project Blogs to informally communicate with
co-developers. Gutwin et al. [29] found that email can be a practical alternative
for announcing important, infrequent events such as the starting and termination of
tasks.

For supporting continuous “stream of consciousness babbling” [31] of the kind
that can be expected in radical co-location, lighter weight tools have been developed.
Elvin [22] is an example of such a tool. Messages posted by a team continuously
scroll in a ticker tape. A tool with similar goals is RVM (Rear View Mirror) [31]
so named because it is intended as an unobtrusive background “rear view mirror”
for the members of the team as they performed their tasks. User studies yielded
several counter-intuitive results about desired features. Originally, the tool showed
users only the last few hours of those messages that were exchanged when they were
logged on. Based on user feedback it was changed to support all of the conversa-
tion. Also previously, an explicit permission had to be given to each person viewing
presence information. Based on user feedback, the system was changed to allow
each member of a team to see the presence information of all the other members.
Presence information was liked more than chat. In fact, managers exchanged only
two chat messages during the study!

A potential problem with the tools above is that a developer interacting with
a programming environment must switch to a separate tool to see the presence
information of and interact with co-developers. Jazz [6] and CollabVS [30] provide
these facilities, in-place, within the programming environment. A study of CollabVS
found that programmers preferred in-place presence and communication [30].

7.3.2 Distributed Pair Programming

The channels above simulate physical channels in radical and regular co-location.
Let us next consider concepts supporting the higher physical coupling provided by
pair programming.
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The easiest way to support such coupling is to use a generic desktop-sharing sys-
tem, which traps window level input events and window or frame-buffer level screen
updates, and transmits them to a remote collaborator. An alternative is to couples the
edit buffers and other components of the semantic state of the programming environ-
ment of the developers [20, Schummer #1092]. The former is slower and requires
use of a special, potentially unfamiliar system for sharing. On the other hand, the lat-
ter requires the developers to manually synchronize their views. A hybrid approach,
taken in Jazz [6] and CollabVS [30] is to add commands to the user-interface of a
programming environment to invoke a desktop sharing system [6, 30].

A study comparing distributed and co-located serial pair programming found that
physical distance does not matter [1]. This is an interesting result because, as men-
tioned above, studies of individual programming have found that distance reduces
productivity [32].

7.3.3 Distributed Side-by-Side Programming

As mentioned above, a variation of pair programming is side-by-side programming,
wherein two programmers sit next to each other working on the same task. It offers
(potentially) looser coupling than pair programming, as the developers can work
concurrently on different aspects of the task; and tighter coupling than radical co-
location, as they are required to work on a single task that has not been decomposed
for them; and more important, are able to see all actions of their partners.

Dewan et al. [17] have devised a distributed analog of this idea. Each developer
in the pair interacts with two computers – one primary computer to act as the driver
of his subtask, and an awareness computer to act as the navigator for the partner’s
subtask. In other words, each programmer interacts with the windows displayed
on his primary computer, and each awareness computer shows the screen of the
partner’s primary computer. The developers use the phone to talk to each other. No
video channel is established between them in this set-up.

A desktop sharing system is used to ensure that each awareness computer shows
the screen of the partner’s desktop. In addition a model-sharing system such as a
file system or a Web server is used to synchronously share edits to code made con-
currently on the two primary computers. Thus, the same input is shared at multiple
levels of abstraction – at the window level by the desktop sharing system and at the
semantic level by the model sharing system.

In this architecture, local response is not affected by the network delays, as is
the case in single-computer (desktop-sharing based) distributed pair-programming
implementations. Thus, the two-computer solution offers good response times for
even pure pair programming.

A study of distributed side-by-side programming showed that developers used
its ability to dynamically switch between pair programming, independent program-
ming, and several other intermediate synchronous programming modes such as
concurrent searching/programming [17].
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7.3.4 Distributed Synchronous Design and Inspection

Distributed pair programming is only one form of distributed synchronous software
engineering. It is particularly interesting because, traditionally, programmers col-
laborate asynchronously on different parts of a project rather than synchronously on
every line of code. On the other hand, activities that precede and succeed the coding
phase – design and inspection – are typically carried out in synchronous, face-to-
face meetings. Therefore, tools have been built and effectively used for distributed
synchronous design [41] and inspection [38]. A study of distributed synchronous
inspection has shown that it is as effective as face to face inspection in terms of
faults found, but developers preferred face-to-face inspection [38].

7.3.5 Other “Towards Being There” Mechanisms

There are a variety of other kinds of distributed tools such as connected kitchens
[35] video walls [25] and media spaces [37] which provide elements of being there
in the same building or room. However, as there have been no studies of their use in
team software development, we ignore them in this chapter. See [15] for a survey of
these and other tools that have not been targeted at software development.

7.4 Beyond Being There

Software tools that go beyond being there automate various aspects of collaboration,
and are thus useful for both (radically) co-located and distributed teams.

7.4.1 File System Events

Traditional version control systems provide an important form of collaboration
automation. When users check-out or check-in files from a version control repos-
itory, interested users are automatically notified about these events. O’Reilly et al.
[42] point out that it is also useful to monitor operations at the file-system level, for
several reasons. Sometimes users manually change the permissions of files to make
them writeable instead of checking them out from the repository. A new project file
is not known to the repository until it is checked in. A repository tracks events at
the user level – sometime a user takes multiple personas, creating multiple different
private workspaces from the same base. While working on one of these workspaces,
it is not possible for him to be notified about actions he took in another workspace.

Therefore they extend the repository events above with the following addi-
tional events: (a) Added/removed: A file known to the repository has been added
to/removed from project working directory pending commit. (b) Updated: A file in
the repository has been updated in the working directory. (c) Needs checkout: A file
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in the working directory has been updated in the repository. (d) Needs merge: A
file has been updated both in the working directory and the repository. (e) Unknown
added/removed/updated: A file in the working directory not known to the repository
has been added/removed/updated.

7.4.2 Persistent Awareness vs. Notifications

An alternate to notifying interested developers about operations of their collabo-
rators on files is to update a persistent view of the file status in the user-interface
of a programming environment or a separate tool. For example, the Jazz [6] and
CollabVS [30] programming environments continuously indicate to developers
which files have been checked-out or are being edited by their team members. In
FASTDash [3] a separate tool provides this facility. Thus, programmers interested in
knowing, for example, if a file is being currently edited by a collaborator need only
look at the persistent view rather than mine through the event history to determine
this information. On the other hand, changes to the awareness information may go
unnoticed. For example, if two developers start editing the same file, neither of them
may notice the change to the view of the file status. Thus, both persistent awareness
of and notifications about collaborators’ operations on files/versions are useful.

7.4.3 Programming Environment Events

Operations on objects maintained by a programming environment that are not
known to the file or version control system may also be of interest to collaborators.
These include starting/stopping of the editing of a particular program construct such
as method or class [19, 50, 51] and concurrent editing of the same or dependent pro-
gram constructs [19, 46, 50]. Awareness of this information can be provided through
notifications or updates of persistent status views. For example, in CollabVS, con-
current editing of dependent program constructs results in both notifications and
updates of awareness views [19].

Three studies have shown the usefulness of providing awareness of programming
environment events. A study of Tukan found that when programmers found them-
selves editing the same program construct, they transformed their individual coding
sessions into a joint pair programming session [51]. Two studies, of CollabVS and
Palantír, respectively, have found that programmers used information about concur-
rent editing of dependent constructs to prevent direct and indirect conflicts [19, 48].
The comments from the CollabVS study [19] also showed that programmers liked
having information about programming environment events even when these events
had no apparent benefit such as conflict prevention. Hegde and Dewan [30] give
several scenarios in which awareness of programming environment events may be
useful. For example, if Alice sees Bob taking an undue amount of time editing a
method, she can offer to help him with the task.
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7.4.4 Shared Version with Multiple Views

Suppose Alice does wish to help Bob finish his task. One approach to do so is to
use distributed pair or side-by-side programming. As mentioned above, distributed
pair programming requires her to work lock step with Bob, not allowing concurrent
work on the task. The scheme for distributed side-by-side programming described
above addresses this issue, but suffers from two related drawbacks in its attempt to
faithfully mimic co-located side-by-side programming. First, it requires each pro-
grammer to view a separate display to observe his partner’s incremental updates.
Second, to receive these edits, the developer must manually pull them from the file
system or web server. These updates are not automatically pushed to him.

Some software development systems have addressed these two problems using a
variation of distributed side-by-side programming. In these systems, as in side-by-
side pair programming, the developers work on the same version of the code-base.
The difference is that they can edit it concurrently using different views of it that
are updated automatically or manually. This is a special case of the general idea
of editing the same model using multiple views [18]. Changes to the model can be
pulled and pushed at various time and space granularities depending on the coupling
between the views [18].

An early system supporting this approach was Flecse [20] which provided tools
that allow programmers to do synchronous concurrent editing, debugging, testing
and inspection. As motivation for such tools, the paper on Flecse [20] provides
the following hypothetical scenario. Three users have finished creating different
procedures of a matrix multiplication program. One of them finds an error in the
output. Two of them use the Flecse collaborative debugger to jointly work with
another to find the bug. The two users find that the bug can be fixed by changing the
semantics of one, of two procedures and cannot agree on which, one of these should
be changed. They use the Flecse multi-user inspection tool to hold a more formal
code-review meeting involving all three users to make the decision. The tool allows
them to make their annotations privately before discussing them in public. The
code review session suggests changing both procedures to eliminate other related
errors.

A follow-up to this work was CAIS [38] an inspection tool supporting both asyn-
chronous and synchronous inspection. User studies with this tool [38] found that
people preferred to perform software inspection asynchronously, until the discussion
became controversial, when they switched to synchronous discussion.

Several other tools have been built based on these ideas. CollabVS [30] allows
developers to asynchronously share the contents of their edit buffers before checking
them to the version control system. SubEthaEdit and Sun’s JSE 7 allow synchronous
editing of the same file in different views. JSE 7 also supports synchronous collabo-
rative inspection by allowing code to be sent through the chat tool, which correctly
formats it. Users can independently scroll the shared code and user comments about
it in the chat window, thereby seeing different views of the inspection data.

Unlike the scheme for distributed side-by-side programming, none of these sys-
tems require a special awareness screen. In these systems, when developers edit the
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same model using different views, they can lose track of the activities of their col-
laborators. As a separate screen for showing these activities is not guaranteed, more
space efficient and thus higher level mechanisms are needed for allowing the team
members to be aware of each others’ views. These mechanisms are different from
those we saw above that allow developers to be aware of the semantic or model
changes of their collaborators. For example, a multi-user scrollbar in SubEthaEdit,
which shows the scrollbars of the collaborators, provides view awareness, while
awareness about the methods being edited by collaborators, provided by CollabVS
[30] provides model awareness.

Few studies have been performed in which software developers concurrently
interact with different views of a shared version without special awareness screens.
Two exceptions are [30] and [8] which were targeted mainly at determining if such
a mechanism could reduce conflicts, and found that this is indeed the case.

7.4.5 Searching and Mining

Allowing developers to easily search for project-related information is another form
of automation that can be supported by a beyond being there tool. Microsoft’s Team
Visual Studio allows developers to easily track information related to work items.
It associates a work item with status information indicating whether it is active,
pending, resolved, or closed. A check-in can be linked to the work item implemented
by it. In addition, if the work item is a bug correction request, it can be linked to the
build and test suites that identified the bug. These links allow the system to search
for various kinds of project information – in particular the status of work items, the
users assigned to a work item, and duplicate work items.

Hipikat [9] extends the above concept by linking additional kinds of information,
deriving some of these links automatically based on similarity of documents, and
providing sorted recommendations in response to requests for similar documents.
These queries are made from the programming environment by asking the system to
provide documents similar to the one that is selected. The user can then recursively
look for documents similar to the recommendations.

To determine how well these features worked, two user studies were performed,
involving an “easy” and “difficult” task. In the easy task, programmers were asked to
extend Eclipse’s hover capability. Given the task description, Hipikat automatically
found a very similar past task as the highest recommendation. As a result, novice
programmers who used Hipikat were as successful as expert programmers who did
not. In the hard task, programmers were asked to extend Eclipse’s version system
integration. Expert programmers who did not use Hipikat missed some subtle issues
while some novice programmers who used Hipikat addressed them because the sys-
tem provided a recommendation that identified these issues. On the other hand, some
of the Hipikat users also missed these issues as the relevant recommendation was
not the highest ranked one. Studying each recommendation was a difficult heavy-
weight task – hence when users found a relevant recommendation, they did not look
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for lower ranked recommendations that provided additional information. Thus, the
recommendations were used shallowly to understand how to start a task, rather than
deeply to understand the system architecture.

The general idea of mining the software artifacts created by groups of soft-
ware developers has several other useful manifestations. Document similarity can
be used to trace different versions of some software artifact, and thereby gain a bet-
ter understanding of the project [36]. SpotWeb [54] finds reuses of the classes of a
framework, and classifies the reused classes as hotspots (coldspots) if there are sev-
eral (few) reuses of the classes. Hotspots (coldspots) can be expected to more (less)
tested and hence reliable than the average classes. More important, from the point
of team software development, new developers in a team can, instead of consulting
older members, look at hotspots and associated reuses to understand how to use the
framework. Zou and Godfrey [57] mine interaction histories to automatically sep-
arate newcomers and experts – the latter tend to focus on a smaller set of artifacts.
This information can be used to find experts, and also to pair developers in pair
programming.

Cataldo et al. [5] have found that mining the version-control logs provides a
method for finding useful dependencies, which complements the static analysis
used in CollabVS and Palantír. For example, files that are committed together
have been found to be closely related to each other. They classify communication
among developers as “good” or “bad” based on whether or not the programmers
are modifying dependent artifacts. Xiang et al. [56] build on this idea by automati-
cally recommending communication among developers working on dependent files.
Schroter et al. [49] support a variation of this idea on in which the communication
is recommended only on failed builds.

7.4.6 Visualization

Visualization is an alternative to query-based searches. Instead of specifying a query
to find some aspect of data, users locate it in a visualization of the data. Tools have
been developed to provide visualization (a) in-the-large of the entire software engi-
neering project, (b) in-the-medium of sets of files, and (c) in the small of components
of a file.

Doppke et al. [21] visualize and enforce the software process by mapping it into
MUD abstractions [11]. Each task is mapped to a MUD virtual room containing
representations of the artifacts manipulated to perform the task. For example the
testing activity is mapped to a room containing the executable being tested, the
inputs fed to it, and the output produced by it. A human enters a room with artifacts
to perform the associated activity, and cannot leave until the activity is finished. On
leaving, the human is directed to the next activity in the workflow.

Doppke et al. found that software processes could not be mapped completely too
traditional MUD spaces, for several reasons. (a) In a traditional MUD environment,
a person can be in a single room at a time, while in a software process, a human can
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be in multiple activities simultaneously. Therefore, they defined the abstraction of a
persona, which is a person’s activity thread. A persona is always at a particular stage
in the activity. When a person enters a room taking on the role of the persona in the
room, he carries on work from that stage onwards. A persona rather than person
is mapped to a room. They defined several typical software engineering personas
such as generic developer and programmer. (b) A software process is associated
with constraints – therefore they extended MUDs to support programmer-defined
constraints for entering and leaving a room. (c) A software task can have several
subtasks, which in turn can have their own subtasks. This was modeled by creating
sub-buildings within rooms.

Instead of or in addition to displaying the current state of the formal process
associated with a project, it is also possible to visualize the informal collaboration
describing its state. Jazz [6] creates such a visualization, called “Team Jam,” which
is a persistent virtual place that includes a discussion board, links to transcripts of
chats, and notifications of the kind of events we saw earlier such as check-in and
check-out of code.

Instead of seeing the complete communication regarding a project, as in Team
Jam, it may be useful to understand the impact various aspects of the communica-
tion has on a project. Sarma et al. [47] have recently developed a browser/visualize,
called Tesseract, that allows programmers to relate artifact dependencies, commu-
nication patterns, and features/bug fixes. For instance, given a bug-fix, a user can
see a visualization of all files and developers involved with the bug, and which of
these developers communicated with each other. Similarly, it visualizes the relation-
ship between the amount of communication among developers working on related
artifacts and the number of bugs.

Tesseract, Team Jam, and the MUD-like process visualization address visualiza-
tion in the large of the entire project. Let us consider next techniques for visualizing
in the medium and small.

Palantír [48] provides visualization of concurrent accesses to hierarchic objects
checked-in by a user to a private workspace. Each object checked out by the user
is associated with a stack of tiled boxes. Different tiles in the stack correspond to
parallel checked out versions. Each tile can contain sub-stacks corresponding to sub-
objects. The stacks are sorted by severity of divergence among the tiles in the stack.
Palantír allows the application to calculate the severity, and proposes some simple
measures including changed vs. not changed, lines changed/total lines, and number
of interface changes. Thus, Palantír provides visualization in the medium of sets of
files as sorted, nested collections of file stacks.

Several examples of visualization in the small exist. One of them is based on
the notion of physical wear, which is a useful concept in the physical world – by
following worn paths, we can find our way in an unknown terrain; and by looking for
worn pages in a recipe book, we can find the popular recipes. Hill and Hollan [33]
create a virtual concept out of physical wear. They associate a line of text with edit
and read wear. Edit wear counts the number of edits made to the line. Edits can be
differentiated based, for instance, on time and author, to create different categories
of wear. Read wear measures how long the line was viewed before it was scrolled
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out or the viewing user became inactive. Edit/read wear can be used to determine,
for instance, which sections are currently changing the most or of most interest.

In the visualization provided by Hill and Hollan [33] collaboration-related infor-
mation about a file is shown in-place by widths of lines in the scrollbar of a window
displaying the file. Froehlich and Dourish [23] provide an alternative approach
wherein collaboration information is displayed by coloring a miniature of the file
displayed in a separate tool. Each line of text in a program is represented by a graph-
ical line consisting of three parts. The first two parts are of fixed length, while the
length of the third part is proportional to the length of the associated text line. All
three parts are colored to indicate collaboration attributes of the text, which include
author, age (time of last edit), and structure (method, comment, import, variable
declaration).

Froehlich and Dourish deployed this system and found that people liked the fact
that they could see project growth over time. Users reported discovering notable
aspects of the team development such as finding (a) from the drastic changes to a
file one day that re-factoring happened that day, (b) up to 15 authors for some files,
(c) files with unusual growth patterns, (d) different indentation and import styles,
(e) changes made by others to files they thought were owned by them, (f) heavily
indented files that were candidates for re-factoring, (g) structures of large functions
without scrolling.

7.4.7 Context-Based Automatic Filtering

In both searching and visualization, a software developer must explicitly find infor-
mation of interest. An alternative is to automatically show information relevant to
the current task of the developer that is based on the activities of the whole team. An
example of this approach is supported by Team Tracks [12]. It allows developers to
identify those classes of the current project that are often visited by the team. (These
are different from hotspots which are classes that are often reused but not necessar-
ily often visited). In addition, if the developer is currently viewing some program
construct, Team Tracks shows a list of related items that are often visited before or
after the construct by the team.

A lab study of Team Tracks showed that the participants used and liked these
features and were able to use them to better understand code. A field study shows
ways in which it could be improved. Code that was often visited to fix bugs in
it was not of interest to people not responsible for fixing these bugs. Moreover,
programmers also wanted to explicitly filter related items by person and time.

7.4.8 Tagging

TagSEA [52] shows how the above limitations of Team Tracks can be addressed.
Like Team Tracks, it can be used by a developer to identify important locations in
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a route through the program, which may be a “maintenance pattern” [52] so that
other developers can easily take the same route. Thus, instead of trying to automat-
ically deduce interesting routes, it requires developers to manually specify them.
Developers can tag any construct using a shared structured tag name and descrip-
tion, which essentially identifies the route. TagSEA supports both the search and
visualization approaches to finding tagged constructs. A developer can ask the sys-
tem to show all constructs matching a tag/route. In addition, when a file is opened
for editing, all tagged constructs are highlighted.

The general lesson to be learnt from TagSEA is that developers interested in find-
ing some information can be helped not only by tools but also other developers. It
would be useful to integrate the Team Tracks and TagSEA approaches by supporting
semi-automatic identification of routes. For instance, a system could automatically
tag constructs that are visited before or after a construct with the same name, and
allow developers to later edit these tags.

7.5 Summary

We have taken above a tour of several novel collaborative software development
concepts. The tour provides a high-level overview of the rationale and nature of
these concepts. More important, it classifies these concepts based on several criteria,
thereby providing an efficient taxonomy for describing the large range of research
tools in which these concepts are implemented.

The “towards being there” virtual channels simulate physical channels available
in face-to-face collaboration. These include light-weight communication channels
such as ticker-tape, which support distributed “stream of consciousness babbling”;
desktop sharing and multi-user programming environments, which supports dis-
tributed pair programming; and multi-user inspection/design tools, which support
distributed synchronous inspection and design.

The “beyond being there” features offer automation that is useful even in face-
to-face collaboration. Some of these make collaborators aware of events that would
otherwise have to be communicated manually. Others allow them to share a single
version using multiple flexibly coupled views. The last form of computer automation
discussed here consists of helping developers locate some information of interest.

This taxonomy is a relatively superficial/high-level classification of collaborate
software development concepts. It is possible to provider more detailed taxonomies
such as the one given in [16] for conflict management. It would be useful to cre-
ate detailed taxonomies for other features presented here such as view and model
awareness and information visualization.

This chapter provides a basis for creating some of these more detailed tax-
onomies.
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Chapter 8
Continuous Coordination Tools
and their Evaluation

Anita Sarma, Ban Al-Ani, Erik Trainer, Roberto S. Silva Filho, Isabella A. da
Silva, David Redmiles, and André van der Hoek

Abstract This chapter discusses a set of co-ordination tools (the Continuous
Co-ordination (CC) tool suite that includes Ariadne, Workspace Activity Viewer
(WAV), Lighthouse, Palantír, and YANCEES) and details of our evaluation frame-
work for these tools. Specifically, we discuss how we assessed the usefulness and
the usability of these tools within the context of a predefined evaluation framework
called DESMET. For example, for visualization tools we evaluated the suitability
of the level of abstraction and the mode of displaying information of each tool.
Whereas for an infrastructure tool we evaluate the effort required to implement co-
ordination tools based on the given tool. We conclude with pointers on factors to
consider when evaluating co-ordination tools in general.

8.1 Introduction

Co-ordination has been studied in different domains and within different contexts,
as any kind of group work entails co-ordination [1, 32]. For our purposes, we focus
on co-ordination efforts that are required to understand interdependencies among
artifacts and developers in a software project, and to take appropriate steps to pro-
duce results with minimal conflicts. We recognize that co-ordination is not a static
process, but one that needs continuous adjustments. This means that concerned indi-
viduals have to have the ability to respond to ongoing changes in the project and the
effects of these changes on their work. Furthermore, co-ordination efforts occur at
multiple levels: among developers, between managers and their teams, among mul-
tiple teams working together, and so on. The information required by an individual
strongly correlates with their role in the team and their perspective of the project.
Therefore, tool support for co-ordination needs to ensure that the right information
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is presented to the right individual at the right time using appropriate presentation
techniques. To achieve this goal, we created a suite of co-ordination tools that meets
the different needs of different kinds of software development activities.

Evaluation of co-ordination tools is both critical and challenging [29]. In this
chapter, we discuss the strategies we used to evaluate our co-ordination tool suite
as well as results from the evaluation. In particular, we discuss our goals when
evaluating the tools with respect to their usefulness and usability. Generally, the
usefulness and functionality of our tool set has been largely motivated by our own
ethnographical studies of multiple software development teams [11, 15].

This chapter discusses our approach to evaluate the usability, as well as, in some
cases, the usefulness of each tool based on DESMET, Kitchenham et al.’s frame-
work for evaluating software engineering tools [29]. The evaluation of each tool
followed a subset of the nine evaluation types listed by DESMET, which was based
on the nature/features of the tools as well as their maturity level. We found that
evaluation should be iterative in nature as has been recommended for prototyping in
software development [27].

The rest of the chapter is organized as follows. The next section provides a brief
introduction to our approach. Section 8.1.2 provides a review of related work in
which we discuss interdependencies and the need for co-ordination in addition to
evaluation methodologies. This background section is followed by a description of
the DESMET framework and our extension of this framework. We then present an
outline of the Continuous Coordination (CC) principles, the origin of the CC tools,
the evaluation approaches adopted for each, and the lessons learned as a result.
The chapter concludes with a discussion of threats to the validity of our work and
conclusions regarding the evaluation of the usefulness and usability of the CC tools.

8.2 Research Context

In software development the need for co-ordination among developers generally
arises because of the underlying technical dependencies among work artifacts; as
well as the structure of the development process [13, 7, 8]. Researchers in the
software engineering as well as Computer-Supported Co-operative Work (CSCW)
communities have recognized this problem and created a host of tools to improve
team co-ordination. However, evaluating the usability and usefulness of such
tools has proven to be extremely difficult. Here we focus on different evaluation
approaches that are applicable for co-ordination tools.

There exists a diverse range of approaches to evaluating collaborative tools,
e.g., [41, 4, 35, 56, 18, 31, 50]. Adopting a combination of empirical evaluation
approaches is perceived as means to meet the challenges typically encountered [49].
The diversity of existing tools and evaluation approaches reflect the many challenges
of facilitating co-ordination in teams [24].

Further, several evaluation frameworks have been proposed to support software
tool evaluation, e.g., [29, 10, 30], among others. We base our evaluations of the
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CC tool suite based on the DESMET framework [29]. We chose DESMET because
it provides the desired level of abstraction that readily lends itself to adoption and
matches our research objectives. This framework has also been successfully adopted
by other researchers to evaluate software tools, e.g., [34, 36, 25].

8.3 The CC Evaluation Framework

The DESMET evaluation methodology separates evaluation approaches into two
broad classes: (1) quantitative evaluations aimed at establishing measurable effects
of using a tool, and (2) qualitative evaluations aimed at establishing method tool
appropriateness, i.e., how well a tool fits the needs and cultures of an organization.
These two methods are further subdivided into experiments, case studies, surveys,
feature analyses, and screening to form nine distinct evaluation approaches. We used
six of the evaluation approaches listed by Kitchenham et al. Note, we did not use
all the approaches for each tool; rather a different combination of approaches was
used based on the particular features, level of maturity, and the goal of the tool,
i.e., usefulness or usability factors. Some of the factors that we considered when
evaluating usefulness or usability were the effort that users’ expended to utilize
and/or understand a CC tool together with the perceived benefits. Moreover, we
considered issues relating to the appropriateness of information that a tool shares
with the development team (e.g., level of abstraction and mode of display).

We used the DESMET framework to determine which evaluation methodology
to use per tool. Here, we present an overview of the evaluation approaches that we
adopted, within the context of the framework as defined by Kitchenham et al.:

1. Qualitative screening is defined as a feature-based evaluation done by a sin-
gle individual (or cohesive group) that not only determines the features to be
assessed and their rating scale, but also performs the assessment. In the initial
screening, the evaluations are usually based on literature describing the software
method/tools rather than actual use of the methods/tools. We conducted such a
screening by surveying existing tools and their features as reported in literature.
Consequently, we surveyed related work for each one of our tools.

2. Hybrid method 1: Qualitative effects analysis is defined as a subjective assess-
ment of the quantitative effect of methods and tools, based on expert opinion.
We have used this analysis approach repeatedly at different phases of tool devel-
opment. All our tools followed iterative prototyping and at the end of each
prototyping cycle, we demonstrated our tools to industry experts as well as
researchers to get their feedback on both usability and usefulness.

3. Qualitative experiment is defined as a feature-based evaluation done by a group
of potential users who are expected to try out the tools on typical tasks before
evaluating them. The tasks are performed by staffs that have used the tool on
a real project. We requested that participants also “think out loud” during the
experiment to get an idea of which features are difficult to understand in addition
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to gaining insights into the reasoning behind their actions [19]. Another subcat-
egory in this approach is the “feature analysis” experiment which is typically
adopted when a tool’s impact is not directly measurable on one project and is
thus evaluated across multiple projects. We conducted such experiments with
mature tools.

4. Quantitative case study is defined as an investigation of the quantitative impact
of tools organized as a case study. This mode of evaluation can be used to
understand the usefulness of a tool when applied to a real project as well as
the scalability of the tool. We utilized data made available in open-source soft-
ware projects repositories as case study data. This data was collected from a real
and ongoing large scale project.

5. Hybrid method 2: Benchmarking is defined as a process of running a number
of standard tests usually comparing one tool to alternative tools and assessing
the relative performance of the tools against those tests. We selected a set of
open source infrastructures to be compared with our tool as a benchmark in this
instance of evaluation.

6. Quantitative experiment is defined as an investigation of the quantitative impact
of tools organized as a formal experiment. We used a large enough sample size
in our experiments to overcome the anticipated effects of individual and team
differences. We typically adopted this methodology to evaluate mature tools
because of the extensive effort and time required.

A detailed description of each tool is presented in the following section together
with details of the evaluation approaches adopted. Appendix presents a summary of
the tools and the evaluation approaches we utilized within the context of DESMET.

8.4 Continuous Coordination (CC) Tools: Their Origin
and Evaluation

Co-ordination occurs at different levels and involves different stakeholders (e.g.,
developers, managers, testers, clients), who may have differing co-ordination
requirements. Our suite of co-ordination tools attempts to meet different require-
ments among different stakeholders.

The CC tool suite was designed while keeping four critical questions in mind
[42]. The first involves identifying when the tool should provide information.
Providing a constant stream of information can overwhelm users, whereas infre-
quent sharing of information may lead to some users lacking information critical
to completing their tasks. The information provided to the user depends on their
role within the team. “What kind of information does the user need?” is the sec-
ond question that guides our work. For example, a manager would typically need
to be aware of team structure and work products to co-ordinate a project. A pro-
grammer, however, would generally need to be aware of changes to the design.
These considerations lead us to ask, “Who should information be provided to?” For
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example, should information be provided to all programmers, to managers, or to a
sub-set of these? Finally, how information is presented should also be considered.
In general, our tools visualize graphical representations of co-ordination informa-
tion because it can be more efficient and easier to understand information presented
graphically than textually [52, 5].

In the following sections, we discuss a subset of the CC tool suite we subjected
to more than one type of evaluation approach and the lessons we learned.

8.4.1 Ariadne

Ariadne is a visual tool that infers dependencies between people based on the
modules they author. Our field studies led us to conclude that the management of
dependencies becomes a daunting task as a project evolves and grows in the number
of artifacts and contributors [14, 16]. These studies gave us insight into several types
of communication and co-ordination problems, which helped us develop several
representative scenarios that revealed the different types of dependency relation-
ships managers and developers need to understand [14]. We call these relationships
“socio-technical” because they involve both artifacts and the people who work on
them.

Ariadne visualizations allow developers and managers to identify relevant socio-
technical relationships central to their co-ordination needs. First, Ariadne creates
a call-graph representing dependencies between source-code modules. Second, the
tool annotates this graph with authorship information by connecting to a project’s
configuration management repository. Finally, Ariadne calculates a sociogram [54]
representing dependencies between developers through the modules with which
they work. The visualization is designed to take advantage of available screen real
estate and thus occupies the entire screen.

Ariadne visualizations were designed to make the most of available screen real
estate (shown in Fig. 8.1). Ariadne lays out called code units on the horizontal axis
and developers on the vertical axis. It draws connections from a dependent author
to the code unit they are dependent upon and back to the author responsible for that
code unit and repeats this for each code unit in the project. Further details on its
visualization and its advantages have been reported elsewhere [51].

8.4.1.1 Objective of Evaluation Process and Steps Taken

Ariadne visualizes socio-technical relationships using highly abstract representa-
tions of dependency information, such as shapes, colors, and axes. As such, effort is
required to learn how to use the tool to accomplish specific tasks. We thus decided
upon an evaluation strategy that would allow us to evaluate this effort in early stages
of the tool’s design.

A survey, or qualitative screening, of literature and existing socio-technical tools
revealed the general need to support awareness of dependencies and identifying
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Fig. 8.1 An overview and zoomed in view of a project’s socio-technical dependencies using
Ariadne

developers of interest via visual interpretation. Literature in the information visu-
alization field identified usability as one important barrier to tool adoption by
end-users [2, 3, 40]. Moreover, evaluating tools in real settings and with real users
(in our case, developers and managers) is expensive in terms of the effort required,
especially in the early stages of design. In an effort to get usability feedback
“cheaply”, we applied multiple inspection usability inspection methods: Nielsen’s
Heuristic Evaluation [37] Lewis and Polson’s Cognitive Walkthrough [55] and
Thomas Green’s Cognitive Dimensions of Notations [22]. In addition, we applied
Edward Tufte’s general principles of information presentation [52, 53]. We per-
formed each inspection method with a team comprised of four colleagues. They
had no experience using the new visualization. This unfamiliarity helped us to
identify problematic design assumptions about new users’ expectations and assump-
tions about interacting with and drawing conclusions from the visualization. Further
information of our evaluations is detailed elsewhere [51].

After this qualitative inspection, we performed a case study where we selected
several open-source projects from Sourceforge.net to visualize. These projects had
been active for several years, and were active at the time of our evaluation. Thus
they represented a test-bed from which to confirm the scalability of the visualization
to real-world projects. In parallel to the previous study, with the help of industry
partners and open-source developers, we assessed the usefulness of current features
and incorporated suggested feedback into the tool. These activities, in combination
with the application of usability inspection methods, constituted a qualitative effects
analysis in terms of DESMET.
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8.4.1.2 Lessons Learned with Respect to the Tool

We were able to tease out commonly occurring problems with respect to usabil-
ity through the combined application of evaluation approaches. For example, the
use of color to indicate individual developers and the directionality of dependencies
proved to be more difficult than we originally thought, especially as we visualized
larger projects. The Cognitive Walkthrough, Tufte’s principles, and the Cognitive
Dimensions analyses highlighted this issue. The Heuristic Evaluation and Cognitive
Dimensions revealed the potential need to allow users to undo certain filtering
actions in order to trace back their steps, as well as the option to view different
configurations of developers, e.g., aggregating them into teams. All three methods
suggested the need to improve feedback (e.g., to indicate that specific dependencies
have not been created instead of displaying no search results).

Ariadne allows users to identify patterns in the way developers call different parts
of code in the system that form a general overview of a project’s socio-technical
dependencies. Throughout the course of applying the usability inspection methods
discussed above, we realized that these patterns would heavily depend on the way
the different axes were ordered. For example, a pattern generated from a tempo-
ral ordering of the code units (arranged by date last modified) might not show up
if the code units were arranged in alphabetical order instead. Thus, the ordering
makes a difference in the patterns that users will see, identify, and flag for future
identification.

8.4.1.3 Lessons Learned with Respect to Evaluation

The usability inspection methods we applied to Ariadne thus far have allowed us
to make certain corrections to Ariadne’s visualization before deploying the tool
to real users in real settings. However, evaluations of this sort cannot account for
organizational issues relating to adoption. This is one limitation of our evaluation
strategy. Publicly exposing sensitive information normally stored in software repos-
itories may have effects on the way developers work or even Ariadne’s results. In
one instance, we showed some of our early visualizations to several open source
developers who commented that they would avoid “touching” certain classes to
avoid breaking dependent code. To an extent, Ariadne can be used by managers and
supervisors to gauge developer’s progress, or lack thereof. Further, as speculated
by our interviewees, individuals may “game” the tool to show an increase in their
contributions, especially if they feel that a lack of activity may be used against them.

Some researchers claim that new evaluation approaches for visualizations are
needed because current approaches test the wrong users and unconventional user
interface components hurt user performance [2, 3]. We have described the imprac-
ticality of deploying Ariadne to our intended end-users in early design. To address
the second point, the results from our evaluation indicate that usability inspection
methods can be usefully applied to abstract visualizations instead of traditional inter-
face components such as methods and drop-down menus. Moreover, despite the fact
that Tufte’s principles of information are general rather than domain-specific; our
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work serves as one of the few examples of the application of these rules-of-thumb
to novel, interactive socio-technical visualizations for software engineering. Thus,
traditional evaluation approaches are still useful for incremental prototyping and
iterative design of our research tools. As we continue to develop and refine Ariadne,
visualization-specific evaluation heuristics like those suggested by other researchers
[57] will become more useful. We expect the aforementioned evaluation to be used
as a point-of-comparison for researchers evaluating socio-technical visual interfaces
in early design.

8.4.2 Workspace Activity Viewer

Workspace Activity Viewer (WAV) provides a highly scalable view of all ongoing
parallel development activities in a software project [43]. WAV visualizes informa-
tion in 3D to illustrate changes to a software project over time, the types and sizes
of the changes, and provides various filters to examine aspects of workspace activ-
ities in more detail. WAV reveals social evolution via a movie-like playback of the
state of the project, showing what developers are active when, and to which types of
artifacts they contribute (Fig. 8.2). As such, WAV can benefit both developers and
managers, and provides two different views: artifact-centric and developer-centric,
accordingly. Both views use a cylinder metaphor to represent workspace changes,
where the width of the cylinder represents the size of a change. In the artifact-centric
view, cylinders represent artifacts, with each segment of a cylinder denoting a devel-
oper who has made changes to that artifact. In the developer-centric view, cylinders
represent developers, with each segment of a cylinder denoting an artifact that devel-
oper has touched. As stacks (artifacts or developers) become dormant, the associated
stack of cylinders slowly moves to the back of the display. A more detailed account
of the tool is reported elsewhere [43].

8.4.2.1 Objective of Evaluation Process and Steps Taken

The objective of our evaluation of WAV was to confirm the accuracy of the tool’s
playback of the activities occurring in real software development projects and to
test the visualization’s capacity to scale to large software projects [43]. In terms of
display technique, we wanted to see if all relevant workspace events could be clearly
visualized using the screen real-estate WAV requires. As we have seen in the case of
Ariadne, deploying tools in real settings is a difficult challenge, especially in early
prototyping. Thus, we decided to evaluate WAV through a case study and report
results to project managers and developers.

We applied WAV to five open-source projects: ArgoUML, GAIM, Freemind,
jEdit, and Scarab. In addition, we analyzed project data from a local company that
collaborates with our research group. Since we used archived data for our case
study, we did not gather information of real-time workspace edits. To overcome this
problem, we simulated workspace data based on CVS change metadata (e.g., who
checked the file in, when they did it, and how much changed). This metadata
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allowed us to establish known states for each artifact and subsequently generate
events correlating to workspace activity before the commit occurred. The evaluation
we performed constitutes a qualitative-effects analysis and a quantitative case study.

8.4.2.2 Lessons Learned with Respect to the Tool

Visualizing the collective activity in a project can allow managers to choose and
identify patterns that may lead to co-ordination breakdowns. For example, the
movie-like playback feature of WAV allows one to see periods of stagnation which
may indicate insufficient progress. Whereas spurts of activity as artifacts and devel-
opers’ piles expand upward and move to the front may indicate conflicts. These
patterns can then be used as potential “red flags” to indicate the possibility of
problems over the lifecycle of a project.

An important concern is the visualization’s ability to scale to large software
projects caused by the amount of workspace events captured [43]. Over this range,
the filters available on WAV’s interface and the ability to rotate the visualization’s
axes provided sufficient support to manage the problem of scalability, as reported
by the managers to whom we showed the data. The evaluation method we chose
for WAV allowed us to validate the accuracy of the events captured by the tool by
correlating them with actual events over the course of development. It was further
validated by a project manager who confirmed our observations.

8.4.2.3 Lessons Learned with Respect to Evaluation Methods

Our evaluations are not a substitute for assessment in real settings. However,
they come close by looking at real project data from real development teams.
Unlike costly evaluation approaches such as talk-aloud methods or human sub-
jects tests, case-study data can be collected relatively cheaply from existing, (often)
publicly available project repositories. While we were not able to gain access to
real workspace activities, we were able to simulate them based on randomizations
of the patterns between known check-ins and check-outs. As such, we could still
make observations about the evolution of the projects. The most expensive part of
the process is reflecting findings back to the original participants.

One aspect that evaluations of this type leave out is usability for the end-user,
which is typically one of the main barriers to visualization adoption [2, 3, 40].
Usability is especially important in the context of the work discussed here because of
the upfront costs associated with human subjects testing. Future WAV evaluations
involves the application of usability inspection methods such as those applied to
Ariadne [51]. These evaluations can reveal patterns of interest and compare activity
between both developers and artifacts.

8.4.3 Lighthouse

Lighthouse is an awareness tool that supports team co-ordination by providing each
developer with information of ongoing activities in the project [9]. The goal of the



www.manaraa.com

8 Continuous Coordination Tools and their Evaluation 163

Fig. 8.3 Lighthouse emerging design

tool is to improve a developer’s understanding about others’ activities and how one’s
own activities affect the others. The tool builds an Emerging Design diagram, an
always up-to-date abstraction of the source code components, dependencies, author-
ship and current changes. The diagram consists of a UML-like class representation
of the code as it exists on the developers’ workspaces (Fig. 8.3). All information
about changes made to the code is collected automatically by Lighthouse from the
IDE and the SCM system and is propagated immediately to all project members.

Lighthouse visualization supports early detection of design decay by allowing
users to identify unintended design changes. Problems like conflicting changes in
shared artifacts and duplicate work can also be spotted as soon as they surface. A
detailed account of the tool’s features and the nature of the support it provides is
reported elsewhere [9].

8.4.3.1 Objective of Evaluation Process and Steps Taken

Lighthouse has been evaluated both via qualitative effects analysis and qualita-
tive experiments. We demonstrated Lighthouse to various industry experts and
academic researchers, obtained and incorporated their feedbacks. Later we evalu-
ated Lighthouse via a qualitative observational study to investigate its usefulness
in warning participants of emerging conflicts, as well as the effort required by an
individual to investigate and resolve conflicts.

This study recruited four graduate student volunteers who had sufficient knowl-
edge about the Java programming language, the Eclipse IDE, and the software
configuration management (SCM) tool (preferably Subversion). These volunteers
used the prototype to execute small programming tasks on a simulated software
development team. More specifically, participants were told that they would be
joining a pre-existing team, substituting a developer who recently left the project.
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They were also informed that the rest of the team was distributed and available
for communication solely by Instant Messaging (IM). Each participant was asked
about their background, given a brief tutorial on Lighthouse, assigned a set of five
programming tasks involving online store software, and asked to fill out an exit
questionnaire. In reality, each participant was working by themselves; the other
two team members being virtual entities (confederates) that were controlled by the
experimenters [44]. The confederate’s programming tasks were simulated with auto-
mated scripts that introduced changes in the software source code at pre-defined
time intervals. Some of these tasks introduced conflicts in the source code that were
supposed to be detected and dealt with by the participants. The experimenter also
controlled the communication via IM between participant and confederates. The use
of confederates allowed for control over the number of conflicts and co-ordination
opportunities introduced in the experiment which facilitated the comparison of
results across experiments.

8.4.3.2 Lessons Learned with Respect to the Tool

For the experiment, we introduced two direct conflicts (concurrent changes to the
same artifact) and two indirect conflicts (conflicting changes to dependent artifacts).
We observed that the timing of conflict introduction was a decisive factor on
detecting direct conflicts; developers who had already started coding a task before
the confederate created the duplicated effort did not detect the conflict. We also
observed that changes made by confederates were either noticed as soon as they
surfaced or not until the end of the task, when participants faced merge problems
because of the SCM system. All changes detected on time, though, were quickly and
appropriately addressed. When indirect conflicts were introduced during the experi-
ment, only half of the participants recognized the conflict in one task and none could
complete the other task in the given time.

We designed the experiment to understand the role of “emerging design” is help-
ing participant’s co-ordinate their work. At the end of the study participants reported
that they found that the emerging design served as a reference for understanding the
software structure, which were corroborated by our observations on how partici-
pants explored the diagram during the study. We also found that participants by
using filters that highlighted recent changes to the emerging diagram were able to
use the diagram as a way of identifying ongoing changes in the project. Finally, in
many cases the emerging design stimulated communication in a team. For example,
when trying to contact a confederate to resolve a conflict, participants always first
looked for the author of conflicting changes using the emerging design diagram. In
all cases, participants contacted the most adequate confederate to address the issue.
Further, changes that were unrelated to the tasks being performed were correctly
ignored, thereby showing that Lighthouse streamlines communications in a project.
However, we observed that participants were sometimes confused regarding which
changes were local and which remote. Consequently, this usability problem might
hinder users from responding to remote emerging conflicts. Our future work will
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provide means to differentiate between local and remote changes, which will help
overcome this problem.

8.4.3.3 Lessons Learned with Respect to the Evaluation of Tool

Our study suffered from threats to validity common for user experiments. The total
time of 1 h was insufficient for subjects to complete all the tasks and a simple walk-
through of Lighthouse’s features was insufficient for them to appropriately learn all
the tool features. We found that the complexity of Lighthouse’s different interactive
features meant participants required more time to learn how to use them. Further,
to understand how the software code was evolving and its effect on the given tasks
required a much longer experiment involving a more complicated code base. Such
an experiment would allow independent changes made in different parts of the code
to interact and create more intricate conflicts. Finally, the pressure of having to com-
plete all the tasks within a limited period of time might have made participants spend
less time observing and understanding the emerging design. We plan to follow this
study with a more detailed in situ study of real developers working on their projects.

8.4.4 Palantír

Palantír is a workspace awareness tool that automatically and unobtrusively inter-
cepts local edits as well as all CM operations in a workspace and transmits these
events across relevant workspaces to inform developers of ongoing changes in the
project [46]. Each workspace summarizes the events it receives and communicates
these to a developer via subtle awareness cues.

The purpose of these cues is to unobtrusively draw the user’s attention to emerg-
ing conflicts, both direct and indirect, without undue distractions or overwhelming
the user with too much information (Fig. 8.4). Palantír currently detects indirect
conflicts that arise because of changes to public methods and variables [45]. Palantír
was integrated into the Eclipse development environment such that annotations in
the package explorer view inform developers of activities in other workspaces (top
inset in Fig. 8.4) and a new Eclipse view, the conflict view, allows users to obtain
further details of changes causing conflicts (bottom inset in Fig. 8.4). The goal is
for the textual annotations to warn developers of impending conflicts and when the
users need further information, they can investigate the conflict via the Palantír con-
flict view, where various kinds of icons provide additional information about the
state of a conflict.

8.4.4.1 Objective of Evaluation Process and Steps Taken

Palantír is one of the more mature prototypes in the CC tool suite. Therefore it has
iteratively undergone several evaluation approaches. Qualitative screening by sur-
veying other tools via literature survey and iterative qualitative effects analysis, to
get feedback from experts, helped us determine its specific awareness and display
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Fig. 8.4 Palantír workspace awareness

features early on in the project. We then validated the feasibility of our approach
via feature analysis experiments, where we integrated Palantír with three SCM
systems – CVS, RCS, and Subversion. We subsequently performed initial qualita-
tive experiments to validate and obtain feedback on our experimental setup before
performing our quantitative user experiments. These experiments were designed to
test the usefulness of Palantír in enabling participants discover potential conflicts
and test its ease of use and the effort required by participants to notice, investigate,
and resolve conflicts in their tasks.

The experiments were specifically designed to observe a participant making edits
in a group setting with (and without) using Palantír to co-ordinate their changes.
Particular individual differences that concern our experiment are differences in how
a team member interacts in the group and a programmer’s technical skills. We
controlled for differences in group interaction by using confederate based design,
similar to Lighthouse evaluations, where a participant could interact with the two
other team members via IM.

We controlled individual differences that stem from technical skills by conduct-
ing stratified random assignment. Further, we benchmarked the non-programming
tasks evaluations with our results from an analogous experiment with programming
tasks. In “textual” experiment, we chose a sample text that was neither too complex
nor too interesting to overwhelm or distract the participants. The text reflected some
key properties of software, primarily modularity and dependency. Modularity was
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attained by using text which was comprised of separate files (chapters). Whereas,
dependency was simulated by text containing references that linked text across
modules and which had to be kept consistent. The textual experiment was fol-
lowed by a “Java” experiment to evaluate Palantír in the programming domain. This
experiment sought to confirm results from the first experiment. However, here we
sought to take into account the limitation of the programmer’s individual differ-
ences becoming visible, especially in the time it takes for them to complete change
tasks.

8.4.4.2 Lessons Learned with Respect to the Tool

The evaluation of Palantír sought answers to three principle questions regarding the
tool’s usefulness and usability. First, does workspace awareness help users in their
ability to identify and resolve a larger number of conflicts? We found with statis-
tical significance that participants in the Experiment group detected and resolved a
larger number of conflicts for both conflict types (direct and indirect). We found that
participants typically noticed information provided by Palantír before embarking on
their task or right after finishing it. Second, does workspace awareness affect the
time-to-completion for tasks with conflicts? An obvious effect of workspace aware-
ness tools is the fact that they incur some extra overhead as developers must spend
time and effort to monitor the information that is provided to them. Further, if they
suspect a conflict then they spend time and effort to investigate and resolve it. We
examine this overhead by comparing the average time, which includes the time to
detect, investigate, co-ordinate, and resolve a conflict that participants in each of
the treatment groups took to complete tasks. We found that on average participants
using Palantír detected a larger number of conflicts without significant overheads.
Finally, does workspace awareness promote co-ordination? We observed that on
detecting a conflict participants generally took one of the following actions: syn-
chronize, update, chat, skip the particular task, or implement the task by using a
placeholder. In general, we saw a comparable number of co-ordination actions for
direct conflicts between the control and experiment groups, but a sharp increase in
the number of co-ordination actions for indirect conflicts for the experiment group.

8.4.4.3 Lessons Learned with Respect to the Evaluation of Tool

Our experiments led us to conclude that evaluating co-ordination tools that require a
group of people to understand and use the information provided to co-ordinate with
each other is extremely complex. While we took great care to control individual dif-
ferences between participants we still found large enough variances in the time to
completion of tasks. Another way of controlling individual differences would have
been to perform a between subject test, i.e., test the same participant in both the
control and experiment conditions using two very similar projects. Additionally, in
our experiment we seeded the same type of conflicts in the same order. It is possible
that participants may learn from past conflicts and change their behavior with how
they react to new conflicts; therefore, changing the order in which we introduced



www.manaraa.com

168 A. Sarma et al.

the direct and indirect conflicts may produce different results. Finally, in the Java
experiment, participants were not required to integrate their changes and build the
entire project. Therefore, nearly all participants in the control group and some in the
experiment group did not detect the conflicts remaining in the code base. This fact
combined with the fact that we did not penalize the task with unresolved conflicts
precluded us from quantifying the benefits of workspace awareness with respect
to the time and effort saved in co-ordination. While this experiment design deci-
sion was disadvantageous, finding the perfect balance between the amounts of time
required for participants to learn about the tool, complete tasks, and the complexity
of the project is not trivial.

8.4.5 YANCEES

Notification servers (or publish/subscribe infrastructures) support the continuous co-
ordination requirements of disseminating information from distributed information
producers to different information consumers in a timely fashion [39]. They provide
mechanisms for publishing, routing, filtering and disseminating information in the
form of events. As such, publish/subscribe infrastructures have been used in support
of different event-driven applications [12, 17, 26, 46]. Whenever a new event-driven
application is conceived, developers face two alternatives: build a publish/subscribe
infrastructure from scratch, or reuse one of many existing research and indus-
trial systems. A qualitative screening of existing publish/subscribe infrastructures
revealed different architectural patterns adopted by industrial and research publish/
subscribe infrastructures in the support of the evolving and heterogeneous require-
ments of different application domains [48]. For example: minimal core, one-size-
fits-all, co-ordination languages and compositional models. Most of these patterns
are neither extensible nor configurable in the set of features they provide, making
their adaptation and reuse a difficult endeavor. This observation motivated the devel-
opment of YANCEES, which is an extensible and configurable publish/subscribe
infrastructure based on plug-ins [47]. As such, our goal in the development of
YANCEES was twofold. First, from the infrastructure developers’ perspective, we
sought the reduction of the development effort. Second, from the point of view of
infrastructure consumers, we sought an infrastructure that can reduce the devel-
opment effort of event-driven applications. In order to evaluate these goals, we
designed the following evaluation.

8.4.5.1 Objective of Evaluation Process and Steps Taken

Our evaluation had three major objectives. First, we sought to assess the usefulness
of YANCEES i.e., its ability to support the performance and application-specific
requirements of different application domains. Second, we sought to evaluate its
usability, which is measured as the development effort of both infrastructure devel-
opers and consumers. Finally, our evaluation compares these measures with existing
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approach in both the literature and industry. We took the following steps to achieve
these goals:

1. We performed qualitative screening of industrial and research infrastructures
with the goal of identifying major architectural patterns adopted by these tools
in the support of different application domains requirements. The screening
revealed four new alternatives which included: (a) employing generalization in
the construction of minimal APIs; (b) supporting extensibility through the use
of co-ordination languages; (c) employing variation in the construction of one-
size-fits-all infrastructures; (d) or supporting flexibility by the use of component
frameworks as is the case with YANCEES.

2. We selected a set of open source infrastructures, one for each category to be
compared in a benchmark. These included Siena [6] representing generalized
minimal APIs; Sun JavaSpaces [20] representing co-ordination languages;
CORBA Notification Service (or CORBA-NS) [38] representing one-size-fits-all
infrastructures, and YANCEES [47] representing flexible compositional infras-
tructures.

3. We selected three feature-rich event-driven application domains as the source
of requirements for our study. These were usability monitoring represented by
EDEM, awareness represented by CASSIUS and collaborative environments
represented by Impromptu [17, 28]. These infrastructures were selected first for
their diversity of requirements, and second, for the previous experience of the
authors in their development, which provides both access to the source code, and
expertise in their set of requirements.

4. The requirements of each application were then abstracted into a set of ref-
erence APIs representing ideal features that a publish/subscribe infrastructure
must support in each domain. We implemented each one of these tree reference
APIs using the four selected infrastructures. We also implemented each API from
scratch, as a control implementation.

5. Finally, we performed a quantitative evaluation of the resulting implementations,
measuring their average responsiveness and the total development effort of each.
The development effort is calculated as the product of the number of lines of
code (LOC) and the McCabe Cyclomatic Complexity (or McCabeCC) of the
code required to adapt each infrastructure in the implemnetatoin of each API
[33]. The goal of the performance benchmark in our study is to determine the
usefulness of the infrastructure, in serving its purpose within the requirements of
each application domain.

8.4.5.2 Lessons Learned with Respect to the Tool

In our performance benchmarks, we compared responsiveness of an infrastructure
implemented with YANCEES with the same infrastructure implemented reusing
the other infrastructures. The results of one of the three benchmarks are shown in
Fig. 8.5 (left). The results show that YANCEES performance is comparable to that
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Fig. 8.5 YANCEES performance benchmark (left) and comparative development effort (right)

obtained by reusing existing infrastructures or even to the cases where the APIs are
built from scratch.

This demonstrates YANCEES ability to support the requirements of differ-
ent application domains and its usefulness in supporting the development of
application-specific infrastructures, with no significant performance penalty.

We also compared the total development effort (measures at the product of LOC
and McCabeCC) to determine the usability of YANCEES when the other infras-
tructures are used to support the three application domains Fig. 8.5 (right). It is
important to note that infrastructures (e.g., Siena, CORBA-NS, etc.,) are reused as
black-boxes. They are extended “from the outside”, by building the required func-
tionality around their provided APIs. YANCEES, on the other hand, is configurable
and extensible “from the inside”, allowing the modification of the set of features its
supports. This fundamental difference is reflected in the graphs of (Fig. 8.5) where
both client and server side development efforts are shown, together with combined
effort (client + sever) in a separate bar.

Figure 8.5 (right) demonstrates that while the total cost of reuse of YANCEES in
all the three scenarios (client + server) is comparable with existing approaches, its
ability to separate client and server-side development has two important advantages.
First, it allows the separation between publish/subscribe infrastructures producers
and consumers, dividing the development effort (the two bars: YANCEES client
and YANCEES server in Fig. 8.5). Second, it reduces the application develop-
ment effort, since the infrastructure can be configured and extended to support
the exact application-specific set of features required by the application domain.
This is made evident by the lower YANCEES client effort (Fig. 8.5). Contrary to
our expectations, the total (server + client) side development effort when using
YANCEES was not significantly lower than the other approaches. This can be the
consequence of the additional effort devoted to configuration and extension of the
infrastructure.



www.manaraa.com

8 Continuous Coordination Tools and their Evaluation 171

8.4.5.3 Lessons Learned with Respect to the Evaluation

When comparing different software infrastructures, developed with different origi-
nal goals, it is important to strive for a fair evaluation process. Different strategies
were adopted in the design of our benchmark to increase equitable comparison
between the different approaches. First, we chose to implement the benchmark
ourselves to eliminate the variance that may come by the use of different devel-
opers at different levels of expertise. Second, we adopted best of breed design
practices in all implementations [21] and modularized common features into
components that were reused throughout the different implementations. We also
adopted the same algorithms used by the original applications (EDEM, CASSIUS,
Impromptu) we emulated. Finally, we aligned the different implementations to
follow the same task structure. This facilitates our data collection and analysis.
These strategies collectively increase the likelihood that code style, algorithms
and overall software architecture were similar throughout our experiments. Finally,
the benchmark tests were conducted in the same set of machines (one client and
one server), connected via a 100 Mbps local Ethernet, thus providing a constant
environment.

While the overall comparison of different infrastructures reusability based on the
number of LOC and McCabeCC allows the comparison of the total development
effort of these infrastructures, they do not reveal important details about the indi-
vidual concerns and costs involved in each approach. For example, the costs of
adaptation, extension and configuration. In order to investigate these costs in more
details, we are currently conducting a finer-grained analysis of the code uses in our
benchmark.

8.5 Discussion

Our goal was to evaluate the usability and usefulness of different co-ordination tools
constituting our CC tool suite. Our tools were motivated by findings from a set
of ethnographic studies on co-ordination in software teams [14, 16] and a qualita-
tive screening of existing co-ordination tools. While these studies formed the basis
on which we determined the usefulness of the tool features, each tool’s usefulness
and usability was further evaluated using the DESMET evaluation framework. The
particular approach used for a particular tool was determined based on its function-
ality, the specific aspect that was being evaluated (usefulness or usability), and the
maturity level of the tool.

The majority of our tools strive to provide appropriate information of ongoing
project activities to the user, therefore, a primary goal of our evaluations was to
study the usefulness of the tools based on whether a tool achieved an appropriate
level of abstraction. Depending on the desired functionality of a co-ordination tool
and the target audience, different levels of data abstraction are required, which can
then be visualized via text, tables, charts, or other visualization metaphors. Most of
our CC tools have a visualization component. These components vary, from being
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completely unobtrusive and subtle, such as information display as extensions to
the development editor, or more intensive displays requiring separate stand alone
visualizations that work best in auxiliary display units (second monitor or ambi-
ent devices) or as large scale visualization that acts as a command control center.
Thus, a key evaluation criterion was to assess the usefulness of a tool’s display
technique. In particular, we investigated the tradeoff between the amounts of infor-
mation that was displayed and the obtrusiveness of the display. Towards this goal,
we observed that qualitative effects analysis and usability inspections served as a
good first level of analysis to obtain user feedback. Further, most software projects
are large, which requires that our tools can scale well to large data sets. Towards
assessing the scalability of our tools, we used quantitative case studies, namely,
using our tools to visualize large scale open source projects and then interviewing
developers or managers from those projects to obtain their feedback.

The next important criterion for our evaluation was to test the usability of our
tools. We primarily evaluated the usability of a tool by investigating the trade-offs
between the efforts users are willing to expend in operating and/or learning a tool,
versus the estimated benefits gained. Moreover, since many visualization tools rely
on novel metaphors to help users interpret and navigate the vast information space
generated by software, it is important to evaluate the time and effort it takes users
to understand visualizations. Therefore, we also evaluated the effort expended by
individuals to understand the information provided by a tool via user experiments
(both qualitative and quantitative).

We found that two challenges are typically encountered when evaluating co-
ordination tools: (1) differences in outcome because of differences in the technical
aptitude of participants and (2) differences in how a group reacts to tasks and con-
flicts. Through our experiments, we sought to control for both these differences. We
controlled for differences in technical aptitude by stratifying our participants based
on their background and then randomly selecting participants from each stratum.
Further, we benchmarked our results first by using non-programming tasks and then
confirming these results in a programming domain. We controlled for differences in
group interactions by using confederate based design, which ensured consistency in
the kind and timing of conflicts, as well as group interactions via IM.

While we took special care to control external factors to be able to test specifi-
cally the usability of our tools, our study suffers from the common external threats
to research validity that arise in user experiments. For example, selecting students
as participants in several of our evaluation threatens the ability to generalize from
our results. We sought to recruit different participants each time with varying levels
of expertise (i.e., graduate and post-graduate students) to limit this threat. We used
confederates to achieve consistency in our experiments. As such, we realize that
results can differ if events are introduced closer to the completion of the task or at
random intervals, as may happen in practice. Thus, the controlled introduction of an
event at a specific time can also threaten the generality of our results.

We note that the evaluation of a co-ordination infrastructure tool such as
YANCEES, require different evaluation methods than other front end co-ordination
tools. Therefore, its evaluations follow a slightly different format, although they
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still fall within the DESMET evaluation framework. We tested the usefulness of
YANCEES mainly through qualitative screening; and the usability and robustness
of YANCEES by implementing three feature rich applications using YANCEES and
three other competing event notification services. A quantitative evaluation of the
resulting implementations was performed that assessed the average responsiveness
and total development effort required per implementation.

Finally, we encountered internal threats in the form of bias that may have been
introduced during our qualitative screening evaluations. The potential for bias also
exists in the feedback participants provided because tool developers typically con-
ducted the experiments and were direct recipients of the feedback. We strove to
minimize the impact of these threats by conducting a combination of different
evaluation approaches for each tool.

8.6 Conclusions

In this paper, we described a set of co-ordination tools as known the CC tool
suite. The focus of this chapter was to describe in detail the different evaluation
methodologies that we followed for assessing the usefulness and usability of our
tools. In conclusion, we maintain there is no one evaluation method for a tool; rather,
tools should be iteratively evaluated using multiple evaluation methods to obtain
well rounded evaluation results. We found that a different evaluation methodology
is often needed to assess usefulness or usability aspects of a tool. Finally, the expe-
rience acquired while researching continuous co-ordination has led us to conclude
that we need to consider the co-ordination information in terms of what, how, when,
and who shares it, which means that the evaluation of these tools would benefit from
evaluating whether these aspects of the tools address developers’ needs.

Future plans for each tool were specified in their respective sections. However,
we have specific tasks ahead of us that hold true for most of the CC tools at both
the individual and organizational level. For example, at the individual level we need
to evaluate the impact that the order of events has on the outcome of our evalu-
ations and the possible co-ordination patterns that can emerge. CC tools typically
share potentially sensitive information, thus it would be beneficial to investigate
the issues relating to individual privacy and data confidentiality. Both are impor-
tant issues that need to be carefully assessed to design usable co-ordination tools.
Co-ordination tools can fail if individuals perceive that the tool is used as a manage-
rial performance metric or used by their competitors [23]. We also need to evaluate
the use of CC tools within an organizational context. A tool that requires changes
to the typical workflow in an organization will generally encounter more resis-
tance because potential users do not readily change their work processes to adopt a
new tool.
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Appendix

Table 8.1 Summary of evaluation approaches for each CC tool

Tool Purpose of tool
Purpose of
evaluation DESMET Evaluation approach

Ariadne Allows
developers to
explore and
analyze
socio-technical
dependency
information.

Identify usability
issues with
Ariadne’s
visual
interface.

Qualitative
screening;
Qualitative-
effects
analysis;
Quantitative
case-study.

Usability inspection
methods: Heuristic
evaluation Cognitive
walkthrough Cognitive
dimensions of
notations Tufte’s
principles of
information
presentation.

WAV Provides a 3D
view of all
parallel
workspace
activities and
supports
playback over
time.

Demonstrate
accuracy of
data collected
and to test
scalability of
the
visualization.

Qualitative
screening;
Qualitative-
effects
analysis;
Quantitative
case-study.

Post-mortem analysis
(e.g. case study) of
existing open-source
projects and validation
of results with project
members.

Lighthouse Creates the
emerging
design, an
always
up-to-date
abstraction of
the software
code.

Observe the
usefulness of
lighthouse in
helping users
understand
ongoing project
activities,
detect
emerging
conflicts, and
communicate
with team
members.

Qualitative
screening;
Qualitative-
effects
analysis;
Qualitative
experiments.

Informal user experiment
involving Observation
by experimenters
Think aloud techniques
Exit survey.

Palantír Promote
workspace
awareness by
transmitting
information of
ongoing project
activities to
detect
emerging direct
and indirect
conflicts at real
time.

Statistically
determine the
usefulness of
Palantír in
detecting
emerging
conflicts and
promoting
coordination to
resolve
conflicts.

Qualitative
screening;
Qualitative-
effects
analysis;
Qualitative
experiments
(user
experiment;
interoperabil-
ity);
Quantitative
experiment;
Benchmarking
of experiment
results.

Formal sser experiment
(Benchmark: use text
data to control for
individual difference
arising due to
difference in technical
skills; Confederate
design: control the
type, number, and
timing of conflicts to
overcome variances in
group interaction)
Observation by
experimenters Think
aloud techniques Exit
survey.
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Table 8.1 (continued)

Tool Purpose of tool
Purpose of
evaluation DESMET Evaluation approach

YANCEES Improve the
support for
heterogeneous
set of
requirements of
continuous
coordination
tools.

Assess the
reusability and
performance of
YANCEES,
comparing the
results with
existing
approaches.

Qualitative
screening to
determine
existing
approaches.
Quantitative
experiment:
reusability
Benchmarking:
performance.

Implement three APIs
based on selected
infrastructures,
measuring the
development effort.
Benchmark: evaluate
the performance of the
resulting
implementations.
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Chapter 9
The Configuration Management Role
in Collaborative Software Engineering

Leonardo Gresta P. Murta, Claudia Maria L. Werner, and Jacky Estublier

Abstract This chapter discusses the impact of configuration management on col-
laborative software engineering, analyzing both the state-of-the-practice and the
state-of-the-art. It starts with a brief introduction of the configuration manage-
ment field and presents how this field has been supporting collaborative software
engineering. It also analyzes the current researches on configuration management
that will potentially help on establishing a better support to collaborative software
engineering in the future. Finally, it presents a summary that details how each con-
figuration management function and system relates to each collaboration aspect of
software engineering.

9.1 Introduction

Configuration Management is a discipline responsible for controlling the evolution
of products [12]. It dates from the 1950s, but has only been applied to software
since the late 1960s [8]. Since then, configuration management is considered to be
one of the core supporting process to software development [7] and a research field
of software engineering [20].

According to IEEE [26] the five main functions of configuration management
are: configuration identification, configuration control, configuration status account-
ing, configuration evaluations and reviews, and release management and delivery.
However, these five functions are traditionally supported by three main subsystems:
issue tracking system, version control system, and build management system.

Because the primary focus of configuration management is keeping the consis-
tency of products, it is concerned with how people interact to develop and maintain
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these products. The complexity of software products led to the need of geograph-
ically distributed teams composed of a large number of developers with different
background. These teams collaborate during software engineering activities, and
configuration management can be considered as an enabling technology to allow
this collaboration.

Collaboration in the context of software engineering encloses different aspects,
such as [1, 14, 27] implicit and explicit communication among developers, aware-
ness regarding other developers’ actions, co-ordination of development tasks to
avoid rework and to achieve the project goals, keeping a shared memory with pre-
vious development actions history, and providing a shared space where the work
made by a developer is available to other developers.

This chapter analyzes how configuration management is providing support to
boost up collaboration in software engineering. This analysis is performed via an
investigation on how each configuration management function (e.g., identification,
control, etc.,) and system (e.g., issue tracking, version control, etc.,) influences
the collaboration aspects (e.g., communication, awareness, etc.,) of software engi-
neering. Moreover, this chapter also discusses how present and future researches
in the field of configuration management can leverage the state-of-the-practice
collaboration support in software engineering.

It is organized into four sections besides this introduction. Section 9.2 presents
the area of configuration management, presenting its main functions and systems.
Section 9.3 shows how each configuration management function and system sup-
ports aspects of collaboration in software engineering. Section 9.4 discusses how
current and future research in configuration management may help improving col-
laboration in software engineering in the future. Finally, Section 9.5 summarizes the
findings and provides a roadmap for further readings.

9.2 Configuration Management

The Configuration Management discipline has arisen in the 1950s as a response to
the increasing complexity of documenting aircraft and spacecraft production [20,
24, 28]. In the 1960s and 1970s, Configuration Management started to deal with
software artifacts, leading to a derived discipline named Software Configuration
Management (we will use configuration management or SCM from now on with the
meaning of software configuration management) [8]. Despite its almost 40 years of
existence, it was only from the beginning of the 1980s, with the wide availability of
tools such as RCS and Make, and the first commercial SCM systems such as DSEE,
that SCM became widely used by industry for all kinds of software, and not only
for critical software.

IEEE Std 610.12 [25] defines configuration management as “a discipline apply-
ing technical and administrative direction and surveillance to: identify and document
the functional and physical characteristics of a configuration item, control changes
to those characteristics, record and report change processing and implementation
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status, and verify compliance with specified requirements.” According to this defi-
nition, configuration management is not intended to establish why or when software
artifacts should be changed, but to support the software development process by
providing control and guidance through the changes that invariably occur.

One of the key concepts of configuration management is the baseline, defined by
IEEE Std 610.12 [25] as “a specification or product that has been formally reviewed
and agreed upon, that thereafter serves as the basis for further development, and that
can be changed only through formal change control procedures.”

The configuration management discipline can be analyzed under different per-
spectives, depending on the role of the stakeholder in the software development
process [3] as shown in Fig. 9.1. In a management perspective, configuration man-
agement can be subdivided into five main functions [26] configuration identification,
configuration control, configuration status accounting, configuration evaluations and
reviews, and release management and delivery.

The configuration identification function intends to provide unique, persistent,
and immutable identification and content to the items that are subject to configura-
tion management. It is the data model supported by the SCM system; it includes the
naming, versioning model, attributes, and relationships between items.

The configuration control function intends to track item evolution; its main goal
is to support the controlled evolution of a previously specified baseline of the prod-
uct. It usually defines: (1) the change request, which describes the improvements
suggested and problems identified in specific items; (2) change classification, which
prioritizes the change request; (3) impact analysis, which establishes the change
request impact in terms of risk, effort, schedule, and cost; (4) change evaluation,
which decides if the change request will be implemented, deferred, or rejected,
according to the impact analysis report; (5) change implementation, which incor-
porate the change into the product; (6) change verification, which compares the

Software Development Process
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Evaluations
& Reviews

Release &
Delivery

Issue tracking

Version Control

Build Management

Management perspective
(functions) 
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(systems) 

Fig. 9.1 Configuration management perspectives
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change request with the actual change; and (7) baseline update, which propagates
the change to other stakeholders. This function is usually automated via the combi-
nation of issue tracking and version control systems. ClearQuest, Bugzilla, and Trac
are examples of configuration control tools.

The configuration status accounting function stores fine-grained information
produced by the other functions and provides this information to authorized stake-
holders, according to their needs. Usually, the information needs are related to
measurement of process improvement, future costs estimation, and management
reports generation. The issue tracking system is usually customized to collect the
necessary information. For instance, tools like JIRA and ClearQuest allow the def-
inition of which information should be collected via forms presented during the
execution of the other configuration management functions.

The configuration evaluations and reviews function takes place periodically or
at least before the baseline release. It usually comprises functional audit, which
reviews test plans, test data, test methodology, and test results, aiming at ensuring
that the product is correct, according to its requirements. Moreover, it also comprises
physical audit, which aims at ensuring that the product is complete according to the
contractual clauses.

The release management and delivery function intends to support the prod-
uct building, producing derived items from source items, composing a consis-
tent product baseline, and deploying the product in the production environment.
Traditionally, tools such as Make were responsible to automate this function, but
currently some recent tools such as Ant and Maven are getting popular.

On the other hand, in the development perspective, configuration management
can be subdivided into three main systems: issue tracking system, version control
system, and build management system.

The issue tracking system (e.g., ClearQuest, JIRA, Bugzilla, and Trac) manages
the configuration control function in a systematic way. It also stores and reports
the information collected during the change request lifecycle, according to the
configuration status accounting function.

The version control system allows the identification of items, according to the
naming and versioning schema, and their posterior evolution in a concurrent way.
It supports the well known import, update, and commit functions (i.e., check-in and
check-out) between the repository and a file system. Some system adds support
to decentralized (peer-to-peer) version control, allowing the existence of multiple
repositories for the same project, treated as branches (e.g., BitKeeper, Bazaar, Git,
and Mercurial). Version control is the fundamental layer required by any SCM sys-
tem; and it is the only support provided by the traditional systems like RCS, CVS,
and Subversion.

The build management system automatizes the complex process of transforming
distinct fine-grained artifacts into a concrete product, according to the config-
uration identification function and release management and delivery function.
Representative systems in this category are Make, Ant, and Maven.

Other additional systems also play a role in configuration management. For
example, the workspace management systemsynthesizes and glue together the
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services provided by the other systems. A workspace is a piece of the file system
populated with copies of shared space items, allowing each developer to perform a
task in isolation. Most often a workspace is created to perform a well defined task
on a well defined piece of the product (e.g., implementing a change request on a
baseline). The workspace management system controls the multiple change requests
performed in parallel and enforces concurrent engineering policies by combining a
high degree of discipline together with agility, making it possible to support dis-
tributed teams working on the same product. The workspace management system is
above the version control system and uses the services and information provided by
the other systems (change control, issue tracking, and build management) to provide
high level support.

All advanced system offer, in a way or another, workspace management func-
tionalities. Some system combine issue tracking and version control together like
Borland StarTeam and Microsoft Team Foundation Server. Full fledge SCM systems
provide a deep integration and synergy between the different functions, includ-
ing process support (e.g., IBM Rational ClearCase, Telelogic Synergy, and Serena
Dimensions).

Finally, each system should be tailored to the specific needs of the functions. For
example, different change request lifecycles may be adopted according to the project
characteristics, different naming and numbering schemas can be used by specific
organizations, and a more rigorous approach for product release in a critical sce-
nario may entail formal verification of marketing viability and product quality level
measurement [28]. These procedures are specified via processes that define how
configuration management should be applied in a specific context. Mature organi-
zations typically use a two-level process for configuration management: a standard
process at organizational level and a defined process at project level. In this case, the
defined process is usually derived from the standard process according to specific
customization guidelines [7].

9.3 Configuration Management as an Enabling Technology
for Collaboration

This section discusses how each configuration management function and system
currently helps the execution of collaborative tasks in software engineering. These
configuration management functions and systems are analyzed in terms of five
collaboration aspects [1, 14, 27] communication, awareness, co-ordination, shared
memory, and shared space.

9.3.1 Communication

The communication aspect of collaborative software engineering entails both formal
and informal exchange of information among members of software development
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teams and other stakeholders [14]. In this context, it is possible to identify tacit
communication, usually performed in an informal way, or explicit communication,
performed in a formal and organized way [33].

This collaborative aspect is supported at least in some degree by all configuration
management functions, with a particular emphasis to the configuration control and
configuration status accounting functions, which are especially intended for this
purpose. Some classical reports are frequently generated to increase the knowledge
of the team regarding the development process status. This usually includes [28]
change request reports, which describe the status of all change requests filled in
the change control process; progress report, which summarizes the status of change
tasks under development; item report, which describes all items of the product; and
transaction report, which lists all changes performed over a specific item.

Some issue tracking systems such as ClearQuest, JIRA, and StarTeam allow
the modeling of the change lifecycle workflow. This workflow establishes how
stakeholders should communicate to implement the configuration control func-
tion. Moreover, issue tracking systems are usually used as forums over specific
issues, where developers can post their opinions and see other opinions regard-
ing the way an issue should be implemented in the system. Trac is an example
of an issue tracking system implemented over a wiki system with the main goal
of allowing collaborative editing of issues. Version control systems also support
explicit communication via commit comments, where developers detail in natural
language what they did in the product. When issues tacking and version control
are integrated (for example ClearQuest with ClearCase) it is possible to navigate
from high level before-the-fact motivation (issue tracking) to low level after-the-fact
implementation (version control system).

9.3.2 Awareness

The awareness aspect of collaborative software engineering entails understanding
activities performed by other stakeholders in the software development process [15].
This kind of information is vital to contextualize team work, helping to avoid rework
and to stimulate collaboration. The shared space can be seen as a (passive) way for
stakeholders to be aware of what occurs in the project. In addition, SCM systems
can notify stakeholders when relevant event occurs; it is what is called awareness
here. From course to fine grain, three different functions provide awareness.

The Configuration status accounting function analyzes the information stored
in the repository and propagates this information to the stakeholders, providing an
understanding of the current status of every change request being processed.

The configuration control system, having in charge the change lifecycle work-
flow, has the necessary information for appropriately notifying stakeholders when
some actions occurred over specific change requests. For instance, when Bugzilla is
used to implement the configuration control function, every change in the status of
an issue is automatically notified to all involved stakeholders, including the client,
developers, and quality assurance team.
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At a fine grain, it is the workspace management system which is responsible
for supporting awareness. This is critical awareness information since work under
way is performed in the many concurrent, independent, and isolated workspaces.
Most current systems only provide after-the-fact information in the form of the
version control system logs. Some systems (e.g., CVS) provide a rudimentary
awareness support, sending an e-mail to the related developers when some par-
allel work starts to happen over a specific file. Advanced awareness systems
can notify in real time the involved developers each time concurrent changes
are performed on the same file, or even on closely related files in two different
workspaces. So far this level of awareness is available only in research prototypes
[18, 34].

9.3.3 Coordination

The co-ordination aspect of collaborative software engineering entails managing the
dependencies of software development activities [29]. This includes understanding
how stakeholders collaborate and finding ways to orchestrate such collaboration.
Co-ordination usually focuses on improving efficiency of the development process.
Lack of co-ordination may lead to rework or suboptimal usage of physical and
human resources.

In basic version control tools like CVS and Subversion, co-ordination is not at
all addressed. In SCM systems, process support directly addresses the co-ordination
aspect; and it is what mostly distinguished low-end to high-end SCM systems. Most
SCM systems include change control; the change request lifecycle is a simple pro-
cess for co-ordinating implementers during development and maintenance, both
within a given change, and between concurrent changes. High-end systems, such
as ClearQuest, provide more advanced ways to define processes and to embed best
practices.

In practice, the issue tracking system is used by many organizations as a task
assignment tool, and a usual workday may comprise checking pending activities
in the issue tracking system and performing these activities. Systems such as
ClearQuest explicitly differs an issue of a task. In this case, different tasks can be
derived from the same issue and each task can be assigned to different development
teams.

Version control systems traditionally offer two co-ordination policies: pes-
simistic and optimistic. The pessimistic concurrency policy forces work serializa-
tion, while the optimistic policy allows parallel work but demands an additional
merge activity [9]. For instance, Subversion allows any combinations of such poli-
cies, selected on-the-fly. Team Foundation Server has an interesting support for a
more generic definition of the whole project development style, with pre-configured
options for Agile or CMMI [7] projects. On the other hand, systems such as
CVS and Microsoft Visual SourceSafe only allow a specific policy, respectively,
optimistic and pessimistic.
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9.3.4 Shared Memory

The shared memory aspect of collaborative software engineering entails storing the
history, both in the activity and product dimensions [14]. In other words, this aspect
is responsible for registering all actions performed by stakeholders and the effect of
these actions on the products.

All the information collected is stored to constitute the project history. This infor-
mation is available for direct, indirect, and statistical inquiries. An example of direct
inquiry is when a stakeholder wants to know the status of a specific change request
and who has already worked on this request. This is supported by the issue tracking
system. An example of an indirect inquiry is when the manager wants to know how
precise the cost was and schedule impact analysis provided by a specific analyst.
This indirect metric can be manually computed if data from a project management
tool is combined with data from the issue tracking system. Finally, an example
of a statistical inquiry is when the manager wants to know if the number of crit-
ical corrective requests will grow in the next month according to the behavior of
the previous six months. Even simple systems, such as Bugzilla, provide graphical
reports based on time series. However, extrapolation may require some additional
processing. This shared memory is mostly supported by the issue tacking system
and focuses on the activities dimension.

The version control function provides support in the product dimension. It stores
each change in the products and the related metadata (why, what, when). This sys-
tem also allows queries over the project history. For instance, Subversion allows
listing all product changes performed by a specific developer or listing all items
changed together to implement a specific change request.

Once again, the integration of the issue tracking system together with the version
control system is the key to improve the shared memory aspect. This integration
allows navigating through the activities and product dimensions. For example, inte-
grated tools like StarTeam or ClearQuest together with ClearCase can compare two
moments in time for the same product and check the difference in terms of imple-
mented change requests (from the issue tracking system) or in terms of added and
removed product items (from the version control system). They also allow the nav-
igation from a change request to the lines of code that implemented the change
request, and vice versa.

9.3.5 Shared Space

The shared space provides a place where stakeholders can access artifacts produced
by other stakeholders [27]. Shared spaces distinguish from shared memory because
it is concerned with how to allow people interact over a set of artifacts, not with how
to store the history of this interaction. On the other hand, shared space distinguishes
from co-ordination because co-ordination is concerned with activities dependencies,
and shared space is concerned with artifacts sharing.

The main feature of a configuration control system is the management of the
artifacts produced during the project life cycle. For that purpose, a configuration
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control system is organized around two repositories, one containing the metadata
(often using a traditional data base), which constitute the shared history; and another
repository containing the artifacts (often using the file system), which constitutes the
shared space.

The shared space management is strongly related to two configuration manage-
ment functions: configuration control and workspace management. Configuration
control is involved since it establishes who is entitled to make changes, when,
to which (shared) artifact and why. Workspace management is involved since it
establishes where and how this change is supposed to be performed. Finally, when
the change on the shared artifact is done, configuration control is involved again
since it defines the conditions under which the changed artifacts can be published
(sometimes called promoted) in the shared space.

The version control system provides some significant support to this collab-
orative aspect of software engineering. It is responsible for storing the different
versions of shared artifacts and the evolution history of these artifacts. Artifacts are
immutable; old versions are never overwritten but new versions are created to store
the changes. With this strategy, every historical version is available in the shared
history (metadata) and in the shared space (artifacts).

9.4 The Future Role of Configuration Management

The future role of configuration management in the context of collaborative software
engineering can be analyzed via two complementary dimensions: the state-of-the-art
researches in the configuration management field and the future trends of configura-
tion management to deliver a better support for collaborative software engineering.
The following two subsection focus on these dimensions.

9.4.1 On-Going Researches

The current research is analyzed in this section in terms of the five previously
discussed aspects.

Regarding communication when items are identified, a good practice adopted
by some organizations is to establish the dependencies among them [23] together
with information regarding teams that are assigned to work on specific items [5].
Some researchers [37] show that this knowledge may indicate which teams should
communicate to better develop the product. In [30] the last check-ins are analyzed
to recommend experts for specific problems; in [31] the same is achieved using data
from issue tracking system. Wiki systems are now used with the goal of leveraging
communication. For instance, JIRA uses the Atlassian Confluence wiki system.

In terms of awareness, the current support is provided after a check-in is per-
formed to the repository, which may lead to rework. Some researches [18, 34, 36]
try to minimize this problem by providing awareness regarding changes performed
in concurrent workspaces in “real time.” Continuous integration tools, such as
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Apache Continuum, CruiseControl, and Atlassian Bamboo, are providing awareness
regarding the effects of changes in the product.

The co-ordination aspect provided by version control system is limited to the
pessimistic and optimistic strategies which sometimes deal with problems during
reconciliation. Presently, some researches [19] focus on increasing the co-ordination
over parallel work via team decomposition, reference workspaces, visibility levels,
and co-ordination policies. Besides the existence of some research in configuration
management applied to co-ordination, this is one of the most needed collaborative
aspects.

The shared memory aspect of collaborative software engineering is responsi-
ble for storing information regarding actions performed in the past and artifacts
produced by these actions. As discussed before, issue tracking and version con-
trol systems provide valuable support to this aspect. However, it is usually difficult
to extract valuable information from such systems. Some current researches [11,
16, 38] focus on mining configuration management repositories and providing
high level knowledge from them. The International Workshop on Mining Software
Repository is a traditional forum that congregates data mining, program compre-
hension, and configuration management communities to focus on detection and
extraction of information from configuration management repositories. For instance,
Gall et al. [22] use release data to detect logical coupling between modules. Ball
et al. [4] have performed some cluster analysis of C++ classes stored in configu-
ration management repositories. Other works also perform historical analysis over
configuration management repositories. Shirabad et al. [35] use inductive learning
to find out different concepts of relevance among logically coupled files. Eick et al.
[17] argue that code decay is related to the difficulty to perform changes. For this
reason, they analyze change history applying decay indexes to identify risk factors.
Draheim et al. [16] argue that product quality is dependent of process quality. Due to
that, the development process activities are analyzed and some metrics are applied
over a version control system. Finally, Zimmermann et al. [38] have evidenced
that mining configuration management repositories can be useful for predicting
likely further changes, detecting hidden dependencies, and preventing incomplete
changes.

When analyzing the shared space aspect of collaborative software engineering,
one of the key research challenges is to keep interrelated artifacts consistent in
response to changes. Currently, some researches focus on detecting and keeping
traceability links among these artifacts [2, 6, 13, 32] or triggering the build manage-
ment system from the version control system to automatically update some artifacts
in response to changes in other artifacts [10, 21].

9.4.2 Future Trends

The on-going trends can be analyzed from two perspectives. The deep trends,
which can be seen almost from the origin of the disciplines (1970s and 1980s), and
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those related with the changes in the context in which configuration management is
performed.

Data model, System model. Among the traditional trends, we can mention the
effort made to improve the underlying data model, also called system model. This
is of fundamental importance, since it allows defining more accurately the depen-
dencies between artefacts, at the logical level, and the structure of the artefact,
at the physical level. It is easy to relate this trend to the researches mentioned
above. A good system model should allow a better description and management
of dependencies not only among items but also tasks, business, stakeholders and
the organisation. Based on a good and accurate system model, it becomes easy to
improve communication and co-ordination since we know the artefacts each team is
interested in and the tasks they have to perform.

Co-ordination is improved since the process is known: the tasks under way, the
future tasks and their temporal dependencies, the artefacts on which they operate,
and the teams involved.

Of course, the shared memory which stores the system model and its evolution,
and which maintains the traceability between tasks, teams, and artefact versions,
becomes an excellent source of information. This is also true for the shared space.

Slowly, the data model used in commercial systems is improving. The dif-
ficulty comes from many reasons, including the unavailability of databases, the
interoperability, and the difficulty to get and maintain an accurate model.

Process support. Since the early 1990s, process support is considered to be the
most distinctive feature for high end SCM systems; it is the most appreciated, but
also the most demanding. In the ideal, a good process support should allow fill-
ing the gap between the company business processes, its development process, its
change control process and its co-operation process. Having a complete traceability
between these levels obviously would help each stakeholder, at each level of respon-
sibility, to better plan its future actions. Clearly, co-ordination would be significantly
improved, for all classes of stakeholders.

Currently only some low level operational processes, like issue tracking and
change control, are really supported. Most of the other processes are not formal-
ized and supported, and when they are supported, it is through third party tools like
workflows and project management.

Awareness. From collaborative engineering point of view, this is an important
feature which is almost fully missing today. Intra workspace awareness is a cur-
rent research topic, which could be considered a special case of process support.
However the techniques and concepts needed for awareness support call for a sepa-
rate research area. Even if some prototypes have shown the feasibility, conceptual,
technical and ergonomical issues are still to be solved before seeing such features
embedded into commercial products.

Integration vs. Interoperability. As already mentioned, communication and co-
ordination call for a deep integration between the different SCM sub-systems. It
has also repeatedly shown that all the collaborative aspects are improved when
more activities and functions, at different levels in the company, are connected. This
calls for extending the functional coverage of the tool. It is the approach that was
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privileged by high end SCM vendors, and led to the emergence of Application
Lifecycle Management (ALM) infrastructures. These infrastructures focus on com-
bining different software engineering tools in an integrated way, usually grounded
in configuration management systems. For instance, some commercial initiatives
of ALM are IBM/Rational Team Concert, constructed over the Jazz platform,
Microsoft Visual Studio Team System, and the Borland solution, combining
different tools from requirement, team and configuration management.

This trend toward even more heavy weight and large scope systems increases
the functional overlapping between them, their complexity, cost and inflexibility.
Many researchers think that the solution is better on composing (making interoper-
ate) simple and specialized independent systems. This is the interoperability trend,
followed by open source and low-end systems. Unfortunately, the limitations of
today technology make problematic the implementation of the high level features
(no common data model, duplication, and inconsistencies). It is not possible today
to really integrate a third party workflow or project management system with a SCM
system, or to make co-operate SCM and PDM (Product Data Management) systems.
Interoperability of independent (and complex) systems, with many overlapping but
incompatible features, is acknowledged as a major and difficult research issue.

Model Driven Engineering (MDE). MDE has impact on the SCM systems since
the artefacts to manage are no longer programs but models with, in general com-
plex derive chains. From the collaboration point of view only, the potential high
number of derivations/transformations in which humans can interfere increases the
need for collaboration, co-ordination, and awareness. Transformations, traceability,
and reverse engineering are current hot research topics. Most of the SCM aspects
like evolution control, diff and merge, co-operative policies; and most collabora-
tive aspects: collaboration, co-ordination, and awareness are not really addressed
in the current MDE technology. Clearly, all the engineering topics addressed in
“traditional” software engineering including, of course, the collaborative aspects,
will have to be revisited in the frame of MDE. We can expect many years of work
before getting a similar level of support. Even if a promising approach, in its current
state and from collaboration perspective, MDE represents more a step back than a
progress.

Cloud computing. With the rising of cloud computing, configuration manage-
ment starts to ground almost every collaborative work, even if it is not related to
software engineering or computer science. This can be seen as ubiquitous con-
figuration management, where people that do not even know what configuration
management are, have their lives directly influenced by these systems. For instance,
services like Google Docs, Microsoft Office Live Workspace, and Apple MobileMe
make intensive use of configuration management algorithms and infrastructures.

9.5 Conclusion

This chapter presented how configuration management has been supporting
collaborative software engineering in the last decades. Aiming at providing an
overview of this support, we ran a survey among 11 accredited specialists from
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Table 9.1 Relationship among configuration management functions and collaboration aspects

Functions x Aspects Communication Awareness Coordination 
Shared

Memory
Shared  
Space 

 Identification 
Low 

µ = 1.2 
σ = 0.8 

Low 
µ = 0.8 
σ = 0.9

Low 
µ = 1.1 
σ = 0.7

Low 
µ = 1.1 
σ = 0.9

Low 
µ = 1.3 
σ = 0.9

Control 
High 

µ = 1.9 
σ = 1.0

High 
µ = 2.1 
σ = 1.0

Medium 
µ = 2.1 
σ = 0.7

High 
µ = 2.1 
σ = 0.8

Low 
µ = 2.0 
σ = 1.0

Status Accounting 
Medium 
µ = 1.8 
σ = 0.9

Medium 
µ = 1.7 
σ = 0.9

Low 
µ = 1.7 
σ = 0.8

Medium
µ = 1.8 
σ = 0.8

Medium 
µ = 1.3 
σ = 0.8

Evaluations and reviews 
Low 

µ = 1.3 
σ = 0.9

Low 
µ = 1.0 
σ = 1.0

Low 
µ = 1.2 
σ = 1.0

Low 
µ = 1.3 
σ = 1.0

Low 
µ = 1.2 
σ = 1.0

Release management  
and delivery 

Medium 
µ = 1.6 
σ = 0.9

Medium 
µ = 1.3 
σ = 1.0

Low 
µ = 1.5 
σ = 0.9

Low 
µ = 1.3 
σ = 0.6

Medium 
µ = 1.8 
σ = 0.8

industry and academia. This survey asked to rank the configuration management
functions and systems support to collaborative aspects according to the following
Likert interval scale levels: high, medium, low, and none, and mapped respectively
to 3, 2, 1, and 0. Table 9.1 summarizes the relationship among the configuration
management functions and the collaboration aspects discussed along this chapter.
The results presented in this table are: mode (in bold) followed by mean (μ) and
standard deviation (σ).

It is possible to notice, after analyzing Table 9.1, that configuration control and
configuration status accounting is the functions that provide most support to collab-
orative software engineering. On the other hand, communication, awareness, and
shared memory are the collaborative aspects that take most advantage from the
adoption of configuration management functions.

Table 9.2 is similar to Table 9.1, but summarizes the relationship among the con-
figuration management systems and the collaboration aspects discussed along this
chapter. It is possible to notice that issue tracking, just followed by version control, is

Table 9.2 Relationship among configuration management systems and collaboration aspects

Systems x Aspects Communication Awareness Coordination Shared
 Memory 

Shared 
 Space 

Issue Tracking System 
High 

µ = 2.4 
σ = 0.9

High 
µ = 2.1 
σ = 1.0

Medium 
µ = 2.2 
σ = 0.9

Medium 
µ = 2.4 
σ = 0.5

Low 
µ = 1.6 
σ = 1.0

Version Control System 
Low 

µ = 1.3 
σ = 0.6

Medium 
µ = 1.6 
σ = 0.8

Medium 
µ = 2.0 
σ = 0.8

Medium 
µ = 2.2 
σ = 0.6

High 
µ = 2.7 
σ = 0.5

Build Management System 
Low 

µ = 0.7 
σ = 0.5

Low 
µ = 0.7 
σ = 0.6

Low 
µ = 0.7 
σ = 0.5

Low 
µ = 1.0 
σ = 0.6

Low 
µ = 1.4 
σ = 0.8
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the system that provides most support to collaborative software engineering. On the
other hand, we can notice that communication, awareness, and shared space are the
collaborative aspects that take most advantage from the adoption of configuration
management systems.

Figure 9.2 draws some interesting conclusions regarding the support provided
by configuration management over collaborative software engineering aspects.
It is possible to notice that the management perspective of configuration man-
agement, represented by configuration management functions, provides a higher
support for communication, awareness, shared memory, and lower support for co-
ordination and shared space. However, the scenario is not the same in the case of the
development perspective, where communication, awareness, and shared space
receive higher attention. According to this survey, co-ordination is the collaboration
aspect that receives less support from configuration management as a whole.

Currently, the configuration management research community has to deal with a
delicate challenge: to continue providing scalable procedures and systems, but with
an increased support to collaborative tasks. Collaboration without control may lead
to rework. However, control without collaboration may lead to inefficient work due
to lack of parallelization.

SCM has been understood primarily as a control system which guaranties that
past items and configurations can be clearly identified and safely rebuild at any later
time. In this view, the immutable repository is emphasized, with little facilities for
collaboration (in the 1970s and 1980s). Then the developer and engineering work
was emphasized, based on independent and isolated workspaces and change control
as a key function (1990s). This allows for scalability, parallel work, and control, but
not for awareness and communication. Recent work tends to improve team support,
emphasizing co-ordination, through an improvement of the process support function
and emphasizing collaboration and awareness through the controlled visibility of the
activities occurring in the many concurrent workspaces.
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Finding the right degree of control and collaboration for specific projects may be
the key to success for collaborative software engineering in the future.
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Chapter 10
The GRIFFIN Collaborative Virtual Community
for Architectural Knowledge Management

Patricia Lago, Rik Farenhorst, Paris Avgeriou, Remco C. de Boer, Viktor
Clerc, Anton Jansen, and Hans van Vliet

Abstract Modern software architecting increasingly often takes place in geograph-
ically distributed contexts involving teams of professionals and customers with dif-
ferent backgrounds and roles. So far, attention and effort have been mainly dedicated
to individuals sharing already formalized knowledge and less to social, informal col-
laboration. Furthermore, in Web 2.0 contexts, little to no attention has been given to
practitioners carrying out complex, collaborative, and knowledge-intensive tasks in
organizational contexts.

This chapter shows how we can effectively support the combination of formal and
informal collaboration and build a Virtual Community for architectural knowledge
sharing. We present a set of collaboration scenarios that define a conceptual model
for such a Virtual Community. A solution in this area would realize the expectations
of companies involved in IT and working in distributed settings to effectively exploit
their expertise, and turn their professional knowledge into a global IT portfolio.

10.1 Introduction

The notion of software architecture is one of the key technical advances to the
field of software engineering over the last decade. The advantages of using explicit
software architecture include early interaction with stakeholders, its basis for
establishing work breakdown structure and early assessment of quality attributes [2].

The GRIFFIN project develops notations, tools, and associated methods to
extract, represent, and use architectural knowledge that currently is not documented
or represented in the system. In GRIFFIN, Architectural Knowledge (AK) is defined
as the integrated representation of the software architecture of a software-intensive
system or a family of systems, the architectural design decisions, and the external
context/environment. The project emphasizes sharing architectural knowledge in a
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distributed, global context. Some of the results can be found in [6, 7, 8, 9, 10, 11,
12, 13, 16, 17].

GRIFFIN is a joint research project of the VU University Amsterdam and the
University of Groningen, both in the Netherlands. The research is carried out in a
consortium with various industrial partners, both large and small. These partners
provide us with case studies and give feedback. The domains of these case studies
range from a family of consumer electronics products to a highly distributed system
that collects scientific data from around 15,000 sensors to a service-oriented system
in a business domain.

Although considerable progress has been made, we still lack techniques for
capturing, representing, and maintaining knowledge about software architectures.
While much attention has been given to documenting architectural solutions, the
rationale for these solutions often remains implicit and is often exchanged in inter-
personal, informal communication. The incomplete representation of the needed AK
leads to several problems that are generally recognized in any software engineering
project, and that become just worse in distributed and global software development:

• Lack of first-class representation [3] architectural solutions, design decisions,
and rationale lack a first class representation in the software architecture.
Consequently, the knowledge about the “what and how” of the software archi-
tecture is quickly lost. Experience shows that this documentation on architecture
design decisions is difficult to interpret and use by individuals not involved in the
initial design of the system.

• Architectural knowledge is cross-cutting and intertwined [3] architectural knowl-
edge addresses technical, business, organizational, and cultural aspects that influ-
ence architectural decisions and design solutions. Due to its inter-disciplinary
nature, architectural knowledge is cross-cutting, affecting multiple components
and connectors, and one piece of architectural knowledge often becomes inti-
mately intertwined with another piece of architectural knowledge.

• High cost of change [3] a resulting problem is that a software architecture,
once implemented, is prohibitively expensive to change. Moreover, changing or
removing existing design decisions is difficult.

• Design rules, constraints, and rationale violated [3] during the evolution of
software systems, designers and even architects may easily violate the design
rules, constraints, and rationale imposed on the architecture during earlier design
iterations.

• Obsolete design decisions not removed [3] removing obsolete architecture design
decisions from an implemented architecture is typically avoided, or performed
only partially, because of (1) the effort required, (2) perceived lack of benefit
and (3) concerns about the consequences, due to the lack of knowledge about
them. The consequence is a rapid erosion of the software system, resulting in
high maintenance cost.

• Architectural knowledge is dispersed and undocumented: documented or for-
malized architectural knowledge is usually limited to technical architectural
solutions. Non-technical knowledge such as business and cultural aspects remains
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tacit and only known to individuals. This architectural knowledge is then lost, and
difficult (if not impossible) to trace back and reuse in later developments.

• Documented architectural knowledge neglects interdisciplinary use: architectural
knowledge documentation should convey the overall architecture to persons with
different culture, skills, and responsibilities in different architectural aspects or
subsystems. Persons working at the subsystem level easily lose track of relations
between their “part” and the overall architecture. This hampers traceability and
may lead to changes that conflict with the general architectural decisions, which
instead should orchestrate the differences between the involved parties.

When software engineering projects are distributed or global, the problems
above are aggravated. Knowledge transfer is a communication process requiring
strict interaction and agile information exchange. In local software development,
it is already difficult to rationalize the type and amount of knowledge we need to
exchange. If in addition exchanges occur remotely and via a technological infras-
tructure, we have to make this knowledge explicit, and we need to identify agile
means to render this process as dynamic and powerful as possible.

In this chapter, we describe the conceptual collaborative scenarios implementing
a virtual community aimed at sharing architectural knowledge in a distributed set-
ting. As envisaged by Zhuge [25] “Modern communication facilities like the Internet
provide people with unprecedented social opportunities for knowledge generation
and sharing”. To improve this knowledge generation and sharing, Zhuge designed
a knowledge grid that supports social activities in different environmental spaces.
In our work we aim at realizing such a knowledge grid for professionals involved
in the software architecture processes. To this end, we first highlight some trends
in architectural knowledge representation and sharing. Then, we define the collabo-
ration requirements for the GRIFFIN virtual community followed by the scenarios
realizing them. We further show how this set of scenarios combine formalized and
informal AK sharing; a combination that can be finally mapped on Web 2.0 services.

10.1.1 From a Codification/Personalization to a Hybrid Knowledge
Management Strategy

In most literature, e.g. [21], knowledge is classified into tacit, documented, and
formalized knowledge. Tacit knowledge (e.g., organization strategies or best prac-
tices) is implicitly known and used by software architects, but not made explicit.
Documented knowledge about software architecture (e.g., design decisions or ratio-
nale) can be interpreted and used by humans, whereas formalized knowledge (e.g.,
domain-specific ontologies) can be created and used by both humans and software
systems.

In software development organizations much knowledge is kept in unstructured
forms: FAQs, mailing lists, email repositories, bug reports, lists of open issues, etc.
Lightweight tools such as wikis, weblogs, and yellow pages are other examples of
relatively unstructured repositories to share information in global projects.
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In the knowledge management literature, a distinction is made between a per-
sonalization strategy and a codification strategy [14]. A personalization strategy
emphasizes interaction between knowledge workers. The knowledge itself is kept
by its creator. One personalization strategy is to record who knows what, as e.g.,
in yellow pages. Each person then has his/her own way to structure the knowledge.
The threshold to participate is usually low, but the effort to find useful information
is higher. In a codification strategy, knowledge is codified and stored in a repository.
The repository may be unstructured (as in wikis) or structured according to some
model. In the latter case, the structure of the repository can be used while query-
ing. An advantage of a structured repository is that the information has the same
form. A disadvantage is the extra effort it takes to cast the information in the form
required. A hybrid strategy may be used to have the best of those different worlds
[1, 11].

10.1.2 From Closed to Open Virtual AK Communities

When we speak of knowledge virtual communities we are immediately brought back
to the concepts of open source software communities [4] and Internet and web-based
communities [23]. Both were born as open social environments of peers. As such,
access from non-members is allowed and aspects like task assignment and work
progress are delegated to the initiative of the individual.

In the early 2000s we observed the shift of the so-called closed communities
living inside business and governmental organizations toward more open, agile prac-
tices. This shift witnessed the creation in large business organizations of hybrid
communities, such as inner-source software communities created according to the
same principles of OSS development, collaborating (to some extent) with exter-
nal, open communities but living within the boundaries of the organization. In a
similar way, with the advent of Web 2.0, principles such as “radical trust on mass-
contributed contents” or “using the web as a knowledge sharing platform” [22]
enterprises applied the same principles to let their employees share the organiza-
tional know-how. For example, Yakovlev [24] gives an overview of widely known
Web 2.0 mechanisms that enable the autonomous creation of virtual communities
of peers. Among them we find wikis (used by enterprises to aggregate input from
members of various focused groups), RSS feeds (allowing community members to
remain up-to-date on selected subjects), social networking (supporting autonomous
community building) and folksonomies (supporting users of a social environment in
collaboratively creating and managing tags to annotate and categorize content).

In summary, organizations moved from closed to open (but regulated) commu-
nities thanks to the acceptation of modern principles and the adoption of enabling
technologies. The GRIFFIN virtual community provides one example of such com-
munities. It is meant to support a community of professionals (software architects)
to effectively carry out their daily work and further contribute to (and learn from)
the community with its own (architectural) knowledge. A combination of strategies
for knowledge codification and personalization should provide each individual with
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the necessary flexibility, to fit in the own working practice and to provide sufficient
incentives for successful AK management.

10.2 Requirements for Collaboration in a Distributed
Environment of Software Architects

Within the context of architectural knowledge management, four broad topics can
be identified:

• AK sharing focuses on methods, tools, and techniques for exchanging AK
among stakeholders directly (through personalization) or indirectly (through
codification).

• AK discovery focuses on the methods, tools, and techniques to find, extract,
and make accessible the relevant AK dispersed across the documentation that
accompanies a software product.

• AK traceability focuses on methods, processes, and tools for codifying and
interrelating AK.

• AK compliance focuses on ensuring that the architectural design decisions are
known, understood, and complied with in the resulting system.

The combination of the four topics of AK sharing, discovery, traceability
and compliance poses the following requirements for collaboration in distributed
environments of software architects:

Manage architectural decisions. Architecting is a decision making process and
architects have to consider lots of technical and non-technical requirements, con-
straints, and concerns. To assist architects in the thought process of balancing these
forces, the collaborative virtual community needs to offer support for managing
architectural decisions and all associated knowledge. This will allow sharing of the
“reasoning behind” architectural designs, because this is what architectural deci-
sions and their rationale represent. It also allows maintaining an explicit backlog
of open issues, concerns, and decisions [15]. This requirement for the collaborative
virtual community includes providing overviews of architectural decisions taken,
plus the relationships between those decisions. Finally, insight in the completeness,
correctness, and consistency of a set of architectural decisions helps architects in
reflecting on the developed solutions, and in identifying conflicts between decisions
taken.

Codify architectural knowledge. The result of the processes of architecting are
reported in artifacts like documents and models. Sharing them allows AK transfer.
In this way the architects and stakeholders not directly involved in decision making,
can participate or acquire after-the-fact information.

Search architectural knowledge. Next to assisting practitioners in producing
architectural knowledge, support during consumption of such knowledge (e.g.,
searching) is equally important. The need for a more balanced view on AK
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sharing, in which support for both producing and consuming AK is included, has
been discussed before [19]. Moreover, one of the main requirements practitioners
stated is support in retrieving the right architectural knowledge at the right time
[12]. This can boost reuse of AK (reusable assets are better accessible) and stimulate
learning among practitioners (knowledge can be found more easily).

Support community building. Due to the size and complexity of most software
systems, it is often infeasible for one architect to be responsible for everything
himself. This focus on teamwork is especially true in global software engineering
environments where the architect-role is often fulfilled by multiple collaborat-
ing architects. Consequently, AK management support should support community
building. This may include facilities to hold discussions or chat with colleagues,
to organize and plan meetings, workshops or events, to peer-review deliverables of
colleagues, to find contact information, expertise and interests of colleagues, and to
retrieve information about what colleagues are currently working on.

Provide intelligent support. We argue that architects would welcome intelligent
support (advice, guidelines) just after or during activities producing and assessing
AK (e.g., writing an architectural description). Intelligent support is more useful
if combined with a certain level of pro-activity. For instance, intelligence and pro-
activity can be provided using avatars that think along with practitioners and suggest
ideas, challenge decisions, play the devil’s advocate, etc.

Enrich architectural knowledge. Ideally architectural knowledge should be pro-
duced and shared below the surface without bothering architects. Automatically
distilling patterns out of unstructured data, for example, would lead to production of
AK without an architect explicitly doing this. Producing and consuming architec-
tural knowledge should thus not be considered an extra, resource-consuming activity
but rather an invisible part of other organizational processes. Enrichment of archi-
tectural knowledge means support for intelligence and pro-activity, which would
also benefit practitioners in their daily work, is the (semi-) automatic interpretation
of content in order to enrich this content. Text mining services could for example
be employed to automatically sift and winnow through existing architectural knowl-
edge stored (e.g., in a database) looking for new patterns, defining best practices, or
locating trends. Based on the findings additional meta-data could be generated by
such a service and eventually presented to the practitioner.

10.3 A Collaborative Virtual Community for AK Management

Within GRIFFIN, we envision a virtual and distributed community of professionals
willing to create and share knowledge.

A virtual community is defined on Wikipedia as “a group of people that pri-
marily interact via communication media [...] rather than face to face, for social,
professional, educational or other purposes”. We extend this definition to embrace
organizations as well as individuals. Accordingly, we consider a virtual commu-
nity as a group of virtual spaces, where each virtual space can correspond to whole
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Fig. 10.1 Distributed community of organizational virtual spaces

organizations, teams of people or individuals. As illustrated in Fig. 10.1 organiza-
tions can share AK in a grid-like configuration of connected sites (like organiza-
tion A) and/or departments or business units (like organization B) where employees
carry out collaborative activities. Individuals hence work in their virtual space where
they can manage their own knowledge and eventually share part of this knowledge
with (remote) counterparts in a collaborative social network of professionals.

10.3.1 Support for Collaborative AK Management

For each of the four AK management topics introduced before (AK sharing, AK
discovery, AK traceability, and AK compliance) we researched the state-of-the-
practice as well as the challenges experienced by the GRIFFIN industrial partners.
For each topic, the following illustrates the related virtual spaces that we designed
and developed, and the architecture process activities they support.

10.3.1.1 Virtual Spaces for AK Sharing

There are several broad activities within the architecting process that demand for
architectural knowledge sharing (AKS). These include:

Decision making. Architecting is inherently a decision making process.
Architects need to balance quality criteria, stakeholder concerns and requirements,
and take a number of architectural design decisions in which they reuse architectural
styles and patterns. Architects guide the architecting process by interacting with
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stakeholders, and are typically involved in various organization and business related
processes. To keep track of all knowledge being created or shared in these processes,
architects maintain a backlog [15]. In this backlog an overview of decisions taken,
constraints, concerns, open issues etc., are maintained to facilitate decision making,
and check for conflicts or other issues.

Building up architectural knowledge. Although every software development
project is unique, some architectural solutions can be applied in different circum-
stances. To facilitate reuse of architectural best practices (such as architectural
patterns, styles and tactics) this architectural knowledge needs to be built up.
This process involves transforming application-specific architectural knowledge
into application-generic architectural knowledge that can be retrieved easily and
applied in future projects.

Stay up-to-date. A lot of architectural knowledge is potentially relevant for archi-
tects. In order to build up expertise it is important to stay up-to-date on market trends
and to be able to learn from available application-generic and application-specific
architectural knowledge.

Describing software architectures. One of the important tasks of architects is
writing down their solution and communicating it with their stakeholders. Often
architecture design is described using a number of architectural views and view-
points. In creating an architecture description important aspects are both the
structure of the document and its completeness and internal consistency. To achieve
this, annotation of AK within an architecture description is necessary.

Personalization support in a community. It is important that architects know
where to find and how to contact each other when needed, so that the expertise
of one architect can assist others. Services such as a chat service or yellow pages
service (“who knows what”) can be used for this purpose.

To carry out these AK sharing activities, several conceptual scenarios have been
designed for the AKS virtual spaces, some of which we show below:

Discuss and negotiate (Scenario SAKS,1)

Situation: Architect(s) need to decide for an architectural design. This involves
meeting all needs and concerns of the relevant stakeholders.
Problem: Each stakeholder has its own concerns and needs that often conflict with
the overall goals of the system to be developed. Architects need to balance all these
concerns in a satisfactory way.
Solution: With a decision making component architects are better supported in nego-
tiating or discussing with colleagues or other stakeholders in the architecting process
about which decisions to take and why. This component acts as an automated way of
managing the backlog. It facilitates architects in dealing with multiple concerns at
the same time by visualizing the decision space, indicating which decisions conflict
with each other, etc. This also helps in personally analyzing tradeoffs and con-
flicts between decisions and alternative solutions. The decision making component
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Fig. 10.2 Decision making component in relation to codified AK

manipulates (i.e., create, read, update, delete) AK stored in a decision space database
that keeps a data set for each project.
Scenario description (see Fig. 10.2):

(a) The architects use the decision making component as visual guide during their
discussions and negotiations about the architecture design.

Subscribe to architectural knowledge (Scenario SAKS,4)

Situation: Architects would like to stay up-to-date.
Problem: How to inform architects of potentially available architectural knowledge
without flooding them with information?
Solution: An architect can use a subscription and notification service to subscribe to
specific AK topics. Based on this information the architect’s user profile is created
or updated. The user profiles database connects to databases where the architectural
knowledge itself is being stored (i.e., the decision space database and best prac-
tice repository) to determine what types of architectural knowledge an architect can
subscribe himself to.
Scenario description (see Fig. 10.3):

S
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Fig. 10.3 Subscription and notification of AK
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(a) The user profiles database keeps a list of subscription topics built from the con-
tents of the decision space database and best practice repository. These AK
sources define a number of topics dependent on the AK stored.

(b) Using the subscription & notification service, the architect creates his user pro-
file by adding contact information, expertise areas and by indicating in which
architectural knowledge categories he is interested.

(c) All codified architectural knowledge that fits these categories is marked as
potentially interesting to this subscribed user and presented to him when the
time is right (cf. Scenario SAKS, 5).

Notify architects about architectural knowledge (Scenario SAKS,5)

Situation: Architects would like to stay up-to-date.
Problem: How to inform architects of potentially available AK without flooding
them with information?
Solution: An architect is notified by a subscription and notification service about
potentially interesting AK depending on his user profile (for example using RSS
feeds or email) as soon as new AK is stored in one of the databases. This notification
mechanism enables the Just-in-Time AK requirement discussed in [12].
Scenario description (see Fig. 10.3):

(a) The subscription and notification service periodically scans for updated AK
codified in one of the databases, and tries to match this with the user profiles
stored.

(b) The AK (or a link to the source) is pushed to all users whose profiles indicate a
match.

10.3.1.2 Virtual Spaces for AK Discovery

Although AK discovery has broader applications, it has originally been developed
and piloted to support software quality audits. Discovery of AK from software prod-
uct documentation is a typical activity that an auditor must perform to collect the
information necessary for expressing an opinion on a product’s quality. A quality
assessment entails a comparison of the SOLL-state of the software product with its
IST-state. For this comparison, a thorough understanding of the actual state of the
software product is obviously needed. A problem an auditor may encounter is one
of information overload: by the time the quality of a product is being assessed, usu-
ally many documents have been written throughout which architectural knowledge
is scattered. The documentation typically contains information on many different
topics, including high-level system architecture, functional design, logical design,
and infrastructure architecture. These topics are not confined to a single document,
but have relations with other topics in other documents as well.

The result of the AKD process is the so-called augmented documentation, i.e.,
a semi-structured combination of the (unstructured) product documentation and
a (structured) quality ontology that defines generic quality criteria and relations
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between them. The documentation is augmented with Latent Semantic Analysis-
inferred meaning (cf. [20]) and related to applicable quality criteria selected from
the quality ontology. Parts of the documentation that have a meaning closely related
to the meaning of a selected quality criterion have been identified. The selected
quality criteria form an index to the product documentation.

Augmented documentation eases the “findability” of architectural knowledge
and the comparison of IST-state product documentation with the SOLL-state eval-
uation frame. By using the LSA text analysis technique, the semantic structure
underlying the product documentation can be found. This allows for suggestions
regarding where to start reading when one is interested in a particular topic. It also
allows for suggestions regarding how to continue reading such that the semantic
difference between two consecutive documents is as small as possible, essentially
providing a reading guide or a route through the documentation. Such a reading
guide may for instance suggest a smooth trajectory from a high-level architectural
overview to increasingly finer-grained specifications.

Some of the most important topics from a quality audit point of view are top-
ics related to quality attributes and/or quality criteria. Therefore, in the discovery
space the documentation is related to the quality criteria from the quality ontology.
Parts of the documentation that have a meaning closely related to the meaning of
a selected quality criterion are identified through LSA. The selected quality criteria
form an index to the product documentation. Since the quality ontology defines rela-
tions between quality criteria, relations between product documentation parts can be
inferred.

To carry out the AKD activities here described, the following scenarios have been
supported by the AKD virtual spaces (shown in Fig. 10.4).

Selection of quality criteria (Scenario SAKD,1)

Situation: Start of the audit, where quality attributes and their priorities (according
to the customer) are known.

SAKD-1, SAKD-4SAKD-1

S AKD-4

SAKD-2, SAKD-3

SAKD-2, SAKD-3

Quality
ontology

Project
documentation

Text analysis component

Selection component

Fig. 10.4 AK discovery in quality audits
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Problem: Which quality criteria to use to assess the product’s compliance with the
customer’s requested level of quality? Since quality criteria are applicable in dif-
ferent product audits, auditors may read through previous audit reports to find out
which quality criteria can be used. Obviously, such ad-hoc reuse is far from ideal,
being time consuming and not transparent.
Solution: Codification in “quality ontology” of quality criteria and their relations
according to generic AK structures (e.g., Kruchten’s ontology [18]) makes them
available for more systematic reuse. Intelligent visualization supports the auditor in
deciding which criteria to use.
Scenario description (see Fig. 10.4):

(a) The auditor uses the Selection component to provide a list of prioritized quality
attributes (e.g., 1=performance, 2=security, 3=usability).

(b) The auditor is presented with a list of measures that are known to favor those
quality attributes (e.g., “use secure connections” for security) or to hinder them
(e.g., “don’t use passwords”). From those measures, auditors may derive quality
criteria: measures that they expect to be in the product.

(c) The auditor indicates which measures should and should not be in the product,
i.e., selects the quality criteria to be used in the audit. Since certain measures
may be related (e.g., be in conflict or depend on each other) certain combi-
nations are not allowed and some others are mandatory. The quality ontology
identifies inconsistencies in the selected criteria and provides suggestions to
solve them.

(d) Further decision support is provided through mining from previous audits latent
relations that are not (yet) codified. This leads to suggestions such as “auditors
who selected the criterion you just selected, also selected criterion X”.

Accessing the body of knowledge (i.e., where to start reading, scenario SAKD,2)

Situation: quality criteria have been selected; auditors need to read the product doc-
umentation to gain a certain level of knowledge about the product they are auditing.
They want to gain a high-level understanding of the most important parts of the
product, i.e., “the architecture”.
Problem: the auditor does not know where to start reading, due to information
overload (too many documents) and AK scattered across multiple documents.
Solution: Text analysis (LSA) discovers the semantic structure of the set of product
documents and relates the meaning of high-level words (e.g., “architecture”) to rel-
evant parts in the product documentation, even if those words are not actually used
in that text (cf. [10]).
Scenario description (see Fig. 10.4):

(a) The auditors determine the type of information they need and provide a term
that denotes this interest (e.g., “architecture”).

(b) The auditors are provided with a list of documents (or parts of documents)
ranked according to how close the meaning of the text is to the meaning of
the term the auditors provided (cf. [10]).
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Guidance through the body of knowledge (Scenario SAKD,3)

Situation: The auditors have read part of the documentation and want to continue
gaining further insight for the audit.
Problem: The auditors want to have a smooth progression through the documen-
tation, however, without any big jumps from e.g., high-level overview to low-level
detail and back again.
Solution: Text analysis provides a distance measure between different text parts that
is employed to guide the auditor through the documentation.
Scenario description (see Fig. 10.4):

(a) The auditors determine their subsequent information need and provide a
corresponding term (e.g., the name of a module for further investigation).

(b) The auditors are provided with a list of documents ranked according to: how
close the meaning of the text is to the meaning of the provided term; and how
close the meaning of the text is to the meaning of the previously read text
(cf. [10]).

Quality assessment (Scenario SAKD,4)

Situation: The auditors have gained an overall understanding of the software prod-
uct and now need to determine the product’s compliance with the selected quality
criteria.
Problem: Again, information overload: Too many documents and not all informa-
tion regarding a particular product quality can be expected to be located at a single
place.
Solution: By relating the meaning of the quality criterion (as defined in the quality
ontology by its description and relation to other criteria) to the meaning of the soft-
ware product documentation, parts of the documentation that talk about the criterion
can be identified.
Scenario description (see Fig. 10.4):

(a) The auditors select a criterion that they want to investigate.
(b) The auditors are provided with a list of documents ranked according to how

close the meaning of the text is to the meaning of the quality criterion.

10.3.1.3 Virtual Spaces for AK Traceability

In AK traceability, three concepts play an important role:

• Concepts: The classes of distinguished AK.
• Relationships: The relationships among these classes.
• Knowledge Entities (KE): Instances of a particular concept that can have

relationships to one or more other instances.
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The activities in a virtual space for AK traceability use these concepts. They
include the following activities:

Identify AK and traceability needs. Codifying AK and providing traceability at
the same time is a costly operation. Hence, it is important to minimize the required
effort to do so. This is achieved in two ways: by focusing on the real AK needs and
by reducing the effort of capturing of creating traceability.

Modeling the required AK and traceability information in a domain model. Based
on the identified needs, the virtual space should assist an architect in defining a
domain model for modeling the relevant AK concepts and relationships. This can
take the form of suggesting (part-of) existing models based on the earlier identified
needs.

Capture the knowledge according to this domain model. The virtual space should
assist stakeholders with capturing the relevant AK in KEs. This is achieved by either
automating the process (such as investigated in the discovery virtual space) or by
offering intelligent integrated tooling in environments in which this knowledge is
created or described.

Integrate captured knowledge with other sources. For the virtual space to offer
optimal traceability, the captured knowledge should be integrated (i.e., related) to
knowledge of other relevant sources. This activity is often intertwined with the cap-
turing activity. There are several ways in which a virtual space could achieve this
integration. First, a virtual space could automate this integration, e.g. by using text
analysis techniques. Second, it could offer step-by-step suggestions on how this
integration could take place, thereby guiding the integration process. Third, it could
offer search functionality and associated suggestions to facilitate a manual integra-
tion process. Often, a combination of these three different possibilities is used for
different concepts.

Consume the AK and its traceability. Once the needed AK has become traceable,
this knowledge can be used for various purposes, including the production of addi-
tional AK and the identified AK and traceability needs. Some of example scenarios
of this usage will be presented.

Evolve the knowledge. Typically, architecture is designed in multiple iterations.
Hence, there is a need to not only evolve the architecture design, but also its associ-
ated knowledge and relations. A virtual space should support incremental updating
of the KE and relationships, both in a reactive and proactive manner. For the former,
a stakeholder wants to change some AK, and see the consequences of this change.
For the latter, a virtual space should be able to detect certain changes and evolve
related AK accordingly. For example, the removal of a requirement potentially
invalidates the architectural decisions based on this requirement. With traceability,
a virtual space could automatically determine such impacts.

Find specific AK to relate to (Scenario STA,1)

Situation: The software architect wants to find specific AK to relate to, so as to
create traceability among the KE.
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Problem: The number of KEs is typically very large and the specific KE might not
be codified yet.
Solution: Based on the domain model, the virtual space makes a first selection of
KE that could be related. Hence, it acts as a classification filter. In addition, the
virtual space uses the traceability information of the starting KE as a way to guess
what the context of the start point is and use this information to assist in the search
process.
Scenario description:

(a) The software architect selects a KE as a starting point.
(b) Optionally, the architect selects a possible relationship (automatically inferred

from the domain model) for the selected KE.
(c) Optionally, the architect can insert some keywords describing the KE to

search for.
(d) The virtual space tries to find plausible candidate KE to relate to and orders the

search results.
(e) The architect uses the traceability information to navigate through the search

results.
(f) The architect selects one of the found KE and codifies the relationship or decides

to manually create the missing KE.

Make an architectural decision (Scenario STA,2)

Situation: The software architect wants to make an architectural decision.
Problem: The software architect needs to rationalize this decision to convince
stakeholders of its relevance and correctness.
Solution: The architect defines the traceability of the architectural decision to other
AK. This makes the rationale of the decision traceable and helps in making the
decision process more transparent.
Scenario description:

(a) The software architect, helped by the virtual space, scopes the problem space,
thereby identifying the reason why an architectural decision has to be made.

(b) The software architect defines the alternative(s) considered.
(c) The architect captures the evaluation of the alternatives. The rationale for a

particular choice is codified by providing traceability to specific AK from the
problem space.

(d) The impact of the chosen alternative is considered for both the problem and
domain space. New AK is created and related accordingly.

Design maturity assessment (Scenario STA,4)

Situation: The software architect wants to know how mature the software architec-
ture design is. This includes the correctness, completeness, and consistency of the
design and its description.
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Problem: Judging the maturity of a design is not trivial, as it requires harmonizing
subjective judgments of multiple experts on both individual and collections of
KE. Again, information overload: Too many documents and not all information
regarding a particular product quality can be expected to be located at a single place.
Solution: The traceability provided by the codified AK allows for an automated
assessment of the completeness of the AK. Since the defined domain model allows
for assumptions about AK that should exist and their relationships. The explicit AK
provides stakeholders the opportunity to assert and administrate the correctness of
each individual KE. Consistency is improved, since navigating through and finding
related AK becomes more easy thanks to increased traceability.
Scenario description:

(a) The software architect selects an architecture description the maturity should be
assessed of.

(b) The virtual space identifies which parts of the AK are incomplete.
(c) The architect completes these AK omissions.
(d) The architect shares the architecture description and associated AK with relevant

stakeholders.
(e) Each of these stakeholders asses the correctness and consistency of the AK and

identify in the virtual space which parts are troublesome.
(f) The architect collects these remarks through the virtual space and resolves them

in a new version of the architecture description.

10.3.1.4 Virtual Spaces for AK Compliance

The architecture of a software system guides the software development activities by
providing the necessary direction for it. Architectural rules are the principles and
statements on the software architecture that must hold at all times, and thus must
be complied with [6]. Architectural compliance in global software development
(GSD) environments poses additional challenges for sharing AK and complying
with architectural rules.

The aim of compliance verification is that the resulting system is in line with the
principles as expressed in architectural rules. A collaborative virtual space should
allow for continuous compliance verification by promoting architectural knowledge
to relevant stakeholders and development sites to reduce the gap between reality and
the principles identified during compliance verification. Hence, the virtual space for
AK compliance should not only support compliance verification in hindsight, but
partly overlap with the virtual space for AK sharing.

To ensure compliance in GSD environments, the virtual space for AK compliance
supports the following activities:

Identify architectural rules requires the virtual space to characterize a (possible
sub-) set of architectural design decisions that are mandatory. The virtual space
presents the architectural design decisions in a format which allows practition-
ers to perform compliance verification, by allowing to indicate entry criteria for
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e.g. the applicability of architectural rules for only part of the system, and criteria
that allow practitioners to determine when architectural rules are satisfied, and when
they are not.

The inject architectural rules in company practice is necessary to let the archi-
tectural rules sink in within the organization. The architectural rules need to be
made known to the practitioners across the different development sites and their
understanding should be verified explicitly.

Verify compliance supports matching designated parts of the implemented sys-
tem with applicable architectural rules. The virtual space for AK compliance
further supports a compliance officer in this process by running compliance checks
automatically, when applicable. The compliance verification results in a list of non-
compliance items that indicate what architectural rules are not complied with and
where in the system this non-compliance occurred.

Address situations of non-compliance The results of the verification are inter-
preted by the compliance officer and presented to the software architect(s). The
virtual space for AK compliance indicates the severity of the non-compliance which
helps the software architect to take adequate follow-up measures. These follow-up
measures can pertain to instructing or re-implementing architectural rules within
the software architecture, or for adjusting the set of architectural design decisions
which, in turn, will affect the set of architectural rules that hold.

The virtual space for AK compliance supports the following scenarios:

Identify architectural rules (Scenario SAKC,1)

Situation: Architect(s) need to decide what architectural knowledge should be
complied with in the software.
Problem: How does an architect indicate what architectural knowledge is manda-
tory? How can an architect be supported in providing the correct information that
allows for both correct implementation and compliance verification?
Solution: Designate a subset of architectural design decisions as architectural
rules.
Scenario description (see Fig. 10.5):

(a) The architect is provided with the set of architectural design decisions from the
decision space.

(b) The architect selects a set of architectural design decisions that should be
complied with.

(c) The architect augments the architectural design decisions with knowledge
necessary to increase their “verifiability”. This includes e.g.,

– Identification of the scope (both related to the system and the project) and
the impact of non-compliance.

– Identification of the way compliance verification can take place (using e.g.,
automated tools or manual inspections).
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Fig. 10.5 Identify architectural rules

(d) The architect identifies a compliance verification method from a list of verifica-
tion options provided to him.

(e) The architect identifies the stakeholders (per development site) that need to be
informed of the AK to comply with.

Push architectural knowledge to relevant stakeholders (Scenario SAKC,3)

Situation: Relevant stakeholders of architectural knowledge need to know what
architectural rules are mandatory and need to be complied with.
Problem: How to ensure that all relevant stakeholders are informed of the architec-
tural design decisions?
Solution: Use a notification system (see Scenario SAKS,5) and ensure that stakehold-
ers have consumed the architectural knowledge. The solution does not make use of
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Fig. 10.6 Push architectural rules to stakeholders and verify their understanding
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a subscription service (Scenario SAKS,4) but uses a predefined set of stakeholders
that must be informed.
Scenario description (see Fig. 10.6):

(a) The notification service matches architectural knowledge designated as archi-
tectural rules with the user profiles.

(b) Based on the user profiles that need to be informed, the notification service
provides the architectural rules to the corresponding users.

Verify understanding with AK (Scenario SAKC,4)

Situation: Relevant stakeholders need to understand the architectural knowledge.
Problem: How to ensure that all relevant stakeholders understand the architectural
rules that must be implemented or complied with?
Solution: It is important to obtain feedback from the relevant stakeholders on their
understanding of, or concerns regarding this architectural knowledge. When devel-
opment sites are distributed, effective implementation of AK can only occur by
collecting feedback from these development sites [5, 6, 7].
Scenario description (see Fig. 10.6):

(a) Practitioners who have received the architectural rules can indicate whether they
are informed of the architectural knowledge.

(b) Feedback on the AK is solicited and transferred to the architect.

Address situations of non-compliance (Scenario SAKC,6)

Situation: A system does not comply with the current architectural rules.
Problem: What are possible measures that the architect can take?
Solution: The architect can either identify if the current architectural rules must be
modified to accommodate the current situation, or the practitioners of the respon-
sible development sites need to change the system comply with the architectural
rules.
Scenario description (see Fig. 10.7):

(a) The architect decides that certain architectural rules in its original form are no
longer applicable and updates the architectural rules accordingly.

(b) The architect reinforces the existing architectural rules. The architect may use
scenarios SAKC,3 and SAKC,4 as a minimum.

SAKC-6a
Decision

space

SAKC-6b

SAKC-6b

Fig. 10.7 Provide follow-up to compliance results
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10.3.2 Towards a Virtual AK Sharing Community

The previous sections presented the conceptual scenarios supporting AK sharing,
discovery, traceability, and compliance in a distributed virtual space. Let’s imagine
an AK sharing community of networked member organizations, each supporting
one or more of such scenarios. In addition to their individual contribution, each
scenario provides generic features that can further propel collaboration, which is
called “social cognition” in [5] i.e., “the ability of a group of people to remember,
think and reason”.

For example (see Fig. 10.8) an auditing organization can locally carry out the
quality audit of a product developed by a certain customer organization. The audit-
ing organization, on its own, can locally annotate AK, which might be relevant
for that audit. If the auditing organization and the customer organization connect
their local virtual spaces and if relevant auditors can subscribe to and be notified
of relevant new AK annotations, auditors are able to speed up the learning pro-
cess about what knowledge is necessary to achieve an opinion about the product’s
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Fig. 10.8 Towards a community: connecting virtual spaces
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quality. Further, experience and know-how can be improved, as well as the level of
trust between the two partner organizations.

In order to provide more advanced AK management support we envision more
of these scenarios that involve connecting virtual spaces of different organizations
or departments of organizations. This will further enhance collaboration among
different parties and will help in increasing the virtual community of architects.

10.4 Future Trends and Research Challenges

Building a virtual community into an organization is a long-term investment and
introduces substantial change. We need to bring convincing arguments, backed by
hard data, that such an investment is worthwhile. We also need ways to realize such
migration. Also to ensure that new scenario combinations (such as the example dis-
cussed in Section 10.3.2) improve the state of the practice, a research challenge is
to obtain a better understanding of what practitioners in the architecting process
need.

A second research challenge is related to the different terminology used by dif-
ferent organizations. Different organizations speak their own “language” of AK. If
AK is to be shared between organizations, then the virtual collaborative community
needs to support appropriate translations from the AK meta-model of one to those of
the other virtual spaces. This is a purely technical problem and can be resolved with
different technologies, e.g., from the ontologies and the semantic web community.
A cost-benefit analysis must be conducted, to make the right trade-off between the
cost of the translation (especially with evolving AK meta-models) and the perceived
benefit (quality of the translation).

Another – more technical – challenge is the visualization of AK in the different
virtual spaces. There is no one-size-fits-all visualization solution. Therefore we need
customizable solutions that can be tailored to the AK meta-model and even the
intended usage.

Crowd sourcing is another trend that may have a large impact on virtual AK com-
munities. The users of these communities may scale up to thousands, and may be
given the power to define, on their own, requirements and use cases for AK; they
may even design their own virtual spaces. This challenge needs to be addressed both
technically (provide the right crowd sourcing technologies) and non-technically
(showing people the benefits and leveraging their self-motivation).

Lastly, sharing AK through the virtual organizations raises many complicated
legal issues, with respect to intellectual property rights. Of course sharing AK
can happen both in open and in inner (closed consortia) communities. These
aspects need to be thoroughly inspected before large corporations are convinced to
contribute and share AK. Also, further research is needed about creating incentives
for architectural knowledge sharing, since the success of the virtual community is
largely determined by the amount of time and energy the users are willing to spend
on it.



www.manaraa.com

216 P. Lago et al.

10.5 Conclusions

This chapter presented the conceptual view of the GRIFFIN collaborative commu-
nity for AK management. This community consists of virtual spaces supporting four
key AK management topics: AK sharing, discovery, compliance, and traceability.

We discussed how each of the scenarios has been designed in the GRIFFIN
project. We further illustrated one example about how such scenarios can be poten-
tially combined to implement more complex scenarios. In this way, scenarios
can provide general solutions to common AK management problems and propel
collaboration among individuals and across organizations.

We would like to especially encourage the industrial community to actively par-
ticipate in addressing the challenges and forming the future virtual AK communities.
We have come to the understanding that in the context of global software develop-
ment, the industry of software-intensive systems faces these challenges intensively
and with an increasing pace. There are still many problems that need to be resolved
and there will be substantial research conducted before AK virtual communities
become a reality. We hope that the industry will be keen in enthusiastically partic-
ipating to this research and shape the way AK communities will collaborate in the
future.
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Chapter 11
Supporting Expertise Communication
in Developer-Centered Collaborative Software
Development Environments

Kumiyo Nakakoji, Yunwen Ye, and Yasuhiro Yamamoto

Abstract Looking at software development as a collective knowledge activity has
changed the view of the role of communication in software development from some-
thing to be eliminated to something to be nurtured. Developer-centered collaborative
software development environments (CSDEs) should facilitate software develop-
ment in such a way, as individual software developers collaboratively develop
information artifacts through social interactions. In this chapter, we identify two
distinctive types of communication in software development, coordination com-
munication and expertise communication, and argue that different sets of design
guidelines are necessary in supporting each type of communication. We then
describe nine design guidelines to support expertise communication based on the
theories of social capital and models of supporting collective creativity.

11.1 Introduction

Software development is in essence information-intensive collaborative knowledge
activity. It is about using information, generating information, and making infor-
mation artifacts. The wide acceptance of agile processes and the success of many
open source projects provide strong evidence that human aspects do matter in soft-
ware development; cognitive and social processes play essential roles in successful
software projects in which individuals’ creative thinking in using and generating
information are nurtured. We argue that software engineering environments must
be designed to foster such individuals’ creative knowledge processes, and that col-
laboration must be supported in the context of individuals’ development activities.
Collaborative software development environments (CSDEs) should be designed
to facilitate and nurture individuals’ creative knowledge processes. We call this
approach developer-centered CSDEs.
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Collaboration takes place with or without explicit communication. On the one
hand, software developers regularly engage in collaboration through artifacts with-
out explicit communication (e.g., by writing comments in code to be read by others).
On the other hand, explicit communication becomes necessary when developers
must ask their peers for information that is otherwise not obtainable. Existing studies
have provided ample evidence that both collocated and distributed software develop-
ment teams frequently engage in communication to acquire necessary information
from peer developers [24, 30, 32].

Such studies have made us aware that there are two distinctive types of situations
in which developers communicate with their peers: one is when they want to coor-
dinate development activities, and the other is when they want to acquire knowledge
and understanding of a particular aspect of the software artifact under investigation.
A developer engages in communication with peer developers in both situations by
using the same communication channels (such as face-to-face, email, or chat), but
the nature of the communication in each is quite different. Despite the quintessen-
tial differences in the nature of the goals, challenges, and concerns between these
situations, studies on supporting communication in software development have not
clearly separated the two.

We distinguish the two types of communication by calling the former coor-
dination communication and the latter expertise communication, and argue that
communication support must be tuned to each type of communication based on
their inherent differences. Different sets of design guidelines need to be developed
for supporting each type of communication in developer-centered CSDEs.

In this chapter, we first briefly describe the historical context for the developer-
centered CSDE approach in software engineering research and discuss why com-
munication must be supported as a first-class object in CSDEs. We then elaborate
the differences between coordination communication and expertise communication
and describe why different guidelines are necessary for supporting each type of
communication. We finally present nine design guidelines for supporting exper-
tise communication. We have derived these guidelines based on the theories of
social capital [17] and models of supporting collective creativity [37, 38] as well
as existing tools in the research fields of intelligent support, groupware, knowledge
management, and organizational memory. We outline each guideline with theoreti-
cal grounds and illustrate each with technical instruments introduced by the existing
tools and environments.

11.2 Historical Context: Three Schools of Research Toward
Developer-Centered CSDEs

Software engineering research has looked at humans and their collaborations from
its very beginning. During the last few decades, however, its emphases have shifted
several times. We identify three distinctive schools of research in this particular area.
Table 11.1 illustrates the differences among these three schools.
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The first school of research, which we call the psychology-centered approach,
has investigated the inner cognitive process of programming by focusing on the
differences between expert and novice (non-expert) programmers through a num-
ber of psychological studies. That was the time right after the 1975 publication
of Frederick Brook’s The Mythical Man-Months, which basically says that the
man-month is not an appropriate measure of software development project per-
formance. It was realized that there is a huge performance difference between
good programmers and not-so-good programmers. This had motivated a large
number of studies to explore what psychological/cognitive factors in program-
ming distinguish experts from novices. The psychology of programming is a
research area that primarily looks at the differences of programming productivity
and efficiency between experts and novices, while studying the benefits as well
as difficulties of mastering programming features (e.g., the if statement design),
methods (e.g., object orientation), and usage (e.g., mnemonic variable names)
[48, 49].

The second school of research, which we call the process-centered approach,
has its focus on the collaborative and managerial aspects of a software develop-
ment project. It views software development as a group activity, or teamwork, and
studies how to improve the capability of a software development organization, such
as process traceability and repeatability [26]. Interestingly, this second school of
research is less concerned with the programming skills of individual developers.
Instead, it focuses more on the skills of organization. This school advocates that a
software development process is programmable, and software development should
be treated as assembly lines in which developers produce software by following
predefined process instructions [39]. Developers take specification documents and
then test specifications as input and produce source code and test cases as output.
Researchers in this second school have primarily focused on how to help project
management in orchestrating and coordinating a number of work pieces that have
been produced by a large number of developers.

The third school of research, which we call the developer-centered approach,
is the focus of our research. It looks at both the cognitive and social aspects of
software development as well as their mutual interactions. The focus has returned
to an individual developer, who is now viewed as having his or her own area of
expertise in terms of a specific context, such as, the expertise on a piece of source
code, the expertise on a certain feature of the program, the expertise on a certain
aspect of the application domain, or the expertise on a certain programming lan-
guage. Thus, symmetry of ignorance, or asymmetry of knowledge, exists among
project members. They often have to collaborate with peer developers to accom-
plish their own programming tasks, and the success of the whole team depends on
such collaborations.

Researchers in the third school explore how to support developers in such a way
that they collectively develop information artifacts. Project managers are expected
to be concerned with how to ensure the creativity and productivity of individual
developers by providing physically, organizationally, culturally, and computation-
ally right environments, rather than to worry only about how to quantify project
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performances and how to keep an eye on the project milestones with regard to the
produced artifacts.

Two major factors have fueled the third school of research: open source com-
munities and agile development methods. Both demonstrate the great importance of
an individual developer’s motivation, engagement, and communication in software
development.

Since a large number of open source software development projects have
emerged – making openly available their source code, related documents, devel-
opment history data, and mailing list archives – a number of field studies have
examined how software artifacts evolve through intensive communicative activi-
ties. As Augustin et al. who operated SourceForge, noted, such data have revealed
that successful open source community projects “employed a number of practices
that were not well characterized by traditional software engineering methodologies”
[4]. Their paper lists mobility of resources, culture of sharing, and peer review and
peer glory as examples of such practices, and labels the practices as “collaborative
software development, or CSD.”

Many of the twelve practices of XP [5], a representative agile method, are con-
cerned with human and social aspects. By embracing individuals and interactions
over processes and tools in their manifesto, agile software development methods
aim to achieve successful software development by nurturing developer’s collective
creative processes [52].

Communication has long been regarded as an important activity in software
development. A software engineering textbook published in 1985 by Fairley, for
instance, shows that 37% of developers’ time is spent in job communication and
email [16]. However, communication was then regarded as an overhead rather than
a part of the fundamental activities in software development. The trend of open
source and agile methods has strongly hinted that communication needs to be treated
as a first-class activity to be supported. The third school of research now views
communication as something to be nurtured, not to be avoided.

It is very important to note that communication costs in software development
remain very expensive, even in the eyes of the third school of research. We argue that
although supporting communication is important, encouraging more communica-
tion in general should not be the research goal. Communication problems are caused
not only by the lack of communicative acts, but sometimes by too many communica-
tive acts. For example, one case study reported that overwhelming incoming mail
messages resulted in a significant coordination problem [11]. Studies have shown
that programmers in general prefer to work in a solitary environment with long
periods of uninterrupted time during which they can concentrate [13]. By engag-
ing in creative knowledge work, developers embrace flow experience, which is a
situation “in which attention can be freely invested to achieve a person’s goals,
because there is no disorder to straighten out, no threat for the self to defend
against” [10].

A developer-centered CSDE should first ensure that a developer can focus on his
or her own task itself, and then facilitate easy communication with peer developers
only when it becomes necessary. An important and often overlooked aspect is that
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when a developer wants to have communication, the person who is the recipient of
this communication is also a developer. Supporting communication must carefully
balance one developer’s needs for communication and the other developer’s needs
for a concentrated flow experience.

11.3 Coordination Communication and Expertise
Communication in Software Development

Many studies have observed how and about what developers communicate with
one another during software development. For instance, through a study on three
well-known open source projects, Gutwin et al. have found that text-based commu-
nications (mailing lists and chat systems) are the developers’ primary sources of
acquiring both general awareness of the entire team and more detailed information
about people’s expertise and activities [21]. In an ethnographic study on an indus-
trial project, Ko et al. have analyzed what information needs developers face during
software development [30]. The findings of this study indicate that coworkers were
the most frequent source of information for software developers, and they were most
frequently sought for the questions, “What have my coworkers been doing?” and “In
what situations does this failure occur?”

Such studies demonstrate that two distinctive types of communication are
involved in software development. One is what we call coordination communi-
cation, in which a developer communicates with his or her peers to discuss and
negotiate in order to resolve conflicts or to avoid possible conflicts among the
software components on which they are working. The structural dependency of soft-
ware components may reflect “social dependency” among the developers who work
on the components in the sense that they have to coordinate their tasks through
social interactions when it is necessary to resolve perceived conflicts [28, 56]. Tools
for supporting coordination communication have been primarily studied in such
research areas as coordinating programmers and programming tasks, through mak-
ing developers aware of what other developers are doing; for instance, Ariadne [14],
Palantir [47] or FastDASH [6].

The other type of communication is what we call expertise communication, in
which a developer communicates with his or her peers to ask for information that
is essential for performing his or her own task at hand [32, 33, 58]. This is usually
for obtaining knowledge and understanding about the design and/or behavior of
a particular part of the system under development. Tools for supporting expertise
communication have been primarily studied in such research areas as knowledge
sharing and expert finding, helping developers ask questions of other developers;
for instance, Expertise Recommender [34], Expert Browser [35] and STeP_IN [58].

The rather obvious separation of the two research areas reflects the fact that these
two types of communication have quintessential differences in nature: in their goals,
challenges and concerns. However, existing studies have not clearly separated and
compared the two types of communication in designing communication support
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for CSDEs. One of the reasons for this might have been the fact that developers
engage in both types of communication through the same communication channels:
by sending email messages, by starting a chat, or by walking to a coworker’s desk.
However, different types of computational support mechanisms are necessary for
the two types of communication due to their different natures.

For instance, a mechanism to find communication partners must be different
in coordination communication and expertise communication because the relation
between the developer who starts the communication and those with whom he or
she communicates is different. In coordination communication, there is a symmet-
ric or reciprocal relation between those who initiate communication and those who
are sought for communication, with roughly equal amounts of interest and expected
benefit. Coordination communication is a part of impact management, which is “the
work performed by software developers to minimize the impact of one’s effort on
others and at the same time, the impact of others into one’s own effort” [15].

In contrast, expertise communication is characterized by an asymmetric and uni-
directional relation between the one who asks a question and the one who is asked to
help [58]. The benefit is primarily for the information-seeking developer, while the
costs are primarily paid by the information-provider. Such costs include the cost of
paying attention to the information request, that of stopping his or her own ongoing
development task, that of composing an answer for the information-seeking devel-
oper while collecting relevant information when necessary, and that of then going
back to the original task.

We argue that different types of communication demand different sets of guide-
lines in designing communication support in developer-centered CSDEs. Redmiles
et al. presented the continuous coordination paradigm for supporting software
development [42]. The paradigm contains four principles: (1) to have multiple per-
spectives on activities and information; (2) to have nonintrusive integration through
synchronous messages or through the representation of links between different
sites and artifacts; (3) to combine socio-technical factors by considering relations
between artifacts and authorship so that distributed developers can infer impor-
tant context information; and (4) to integrate formal configuration management and
informal change notification via the use of visualizations embedded in integrated
software development environments [42]. Part of this paradigm supports coordi-
nation communication, and some, but not all, of its principles may also apply to
support expertise communication.

In the remainder of this chapter, we present design guidelines for supporting
expertise communication in software development. By “expertise communication,”
we do not mean knowledge exchange or knowledge transfer in a general sense. We
use the phrase to refer to activities of a software developer who seeks, from his or
her peer software developers, information that is essential yet not readily available
in existing artifacts to accomplish his or her task, right in the middle of software
development. The developer communicates with coworkers and asks for information
not for the sake of increasing general knowledge in the abstract but to perform his
or her own immediate task.



www.manaraa.com

11 Supporting Expertise Communication 227

11.4 Nine Design Guidelines for Supporting
Expertise Communication

This section presents nine design guidelines for supporting expertise communica-
tion.

Guideline #1: Expertise communication must be seamlessly integrated with other
development activities.
A need for expertise communication emerges during the development activity when
a software developer finds his or her task in need of information that is available
only through other developers. The developer must be able to acquire the necessary
information in a timely fashion so that he or she can carry out the current task more
effectively and productively in a fluid manner [57]. Communication with peer devel-
opers to seek expertise should be supported as a continuum of information search
tasks from an information-seeking software developer’s point of view. It needs to
be integrated with the software development environment to minimize the cognitive
cost of conscientiously switching to a different application that supports expertise
communication.

Not many existing tools supporting expertise communication consider this
guideline. One of few tools that follow this guideline is STeP_IN_Java [58].
STeP_IN_Java has the “Ask Expert” feature embedded within the Java document-
browsing interface. Each Java method is accompanied with the “Ask Expert” button;
by pressing the button, the user is connected to a message-composing interface to
write a question about the Java method, which is then delivered to those devel-
opers who have expertise about the method. The system thus makes expertise
communication a natural extension of browsing Java documents.

Guideline #2: Expertise communication mechanisms should be personalized and
contextualized for the information-seeking developer.
Information seeking in software development is an in situ and highly individualized
action. A developer’s needs for acquiring information from his or her coworkers
arise when he or she is dealing with a specific task in a development environment.
Integration with the development environment provides the context of the prob-
lem with which a developer is dealing. Such a context should be utilized by an
expertise communication mechanism to customize its support to the context and the
background knowledge of the developer [12, 57].

Identification of experts should be tuned for who is looking for what. Expertise
is not an absolute attribute but a relative attribute of a developer, and it changes
over time. Answer Garden [2] is an early attempt to identify UNIX experts based
on predefined expertise profiles. The Expertise Recommender system [34] mines
configuration management logs to identify experts based on organizational relations
to support software maintainers. The developmental histories of developers (such
as activities recorded in Concurrent Versions System (CVS) repositories, mailing
archives, and written programs) should be used to identify who has the needed
expertise about a particular problem at the particular moment [35, 55]. Having
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temporal information of the socio-technical context allows the information-seeker
to understand whether a developer has the expertise being sought, and how he or she
has gained it. Such information is not only useful for identifying the expertise being
sought, but also valuable for understanding the information-seeker’s background so
that the system can locate those who have mental models similar to those of the
information-seeking developer [55].

Guideline #3: Expertise communication should be minimized when other types of
information artifacts are available.
Resorting to peers as information resources involves not only the information-
seeking developer but also those developers who are asked to provide information
[27]. Expertise communication is therefore an expensive means to get a devel-
oper’s work done. It should not be promoted as the first choice; rather, it should
be avoided when code, documents, development history records, archived previ-
ous communications, and/or other artifacts that satisfy the information needs are
available.

Two mechanisms have been explored to consider this guideline in existing
research: (1) initially leading users to artifacts before providing the means of exper-
tise communication; and (2) archiving communication results to avoid unnecessarily
repeated communications.

One example is Answer Garden and Answer Garden 2 [1, 2] which first allow a
user to browse a database of commonly asked questions; if the sought answer is not
present, the system “automatically sends the question to the appropriate expert, and
the answer is returned to the user as well as inserted into the branching network,
thus evolving the organizational memory [1].”

STeP_IN_Java [58] takes a similar approach by first guiding a developer in
attending to the search and browsing interface of Java source code, documents, and
communication archives. Only from the browsing interface does the system allow
the developer to compose a question and ask other developers for information about
the browsed artifact. The communication is again archived and associated with the
artifact.

Other mechanisms, such as TagSEA, which is a shared waypoints mechanism
to mark specific locations in Java source code elements or documents by using
social tagging [50], are also useful in guiding developers to access previously
communicated information.

Guideline #4: Expertise communication mechanisms should take into account the
balance between the cost and benefit of an information-seeking developer and the
group productivity.
From the project team’s perspective, expertise communication is a two-edged sword
in solving collaboration problems in software development. Broadcasting a ques-
tion allows a developer to find the right people by letting other developers decide
for themselves whether to respond [21]. However, if developers are frequently inter-
rupted to offer help, their productivity is significantly reduced, resulting in lower
group productivity for them [59].
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Attention has been rapidly becoming the scarcest resource in our society [20].
Attention economy is concerned with the use or the patterns of allocation of atten-
tion for the best possible benefits. Following this thread of thought, the concept
of collective attention economy has been proposed and used as an instrument to
analyze the effective use of the sum of the attentions of the members in a group
[59].

Our rough estimate of how much attention (in terms of time) is collectively spent
in expertise communication in the mailing list of the open source project Lucerne
is that more than 60,000 min (more than 1,000 h) were collectively spent every
month [59]. In an organizational setting, this collective cost might even outweigh the
benefits of knowledge collaboration; it certainly decreases the overall productivity
of the whole project [41].

Some studies have looked into this problem. Both the Answer Garden approach
[2] and the STeP_IN approach [58] try to reduce the cost incurred by expertise
providers by limiting the recipients of the question only to those who are both able
(through the expert identification process) and very likely to be willing (through the
expert selection process) to answer the question.

Guideline #5: Expertise communication support mechanisms should consider social
and organizational relationships when selecting developers for communication.
Favorable interpersonal relationships help in communicating expertise due to pre-
existing trust and mutual understanding [1]. An arduous relationship between an
information seeker and an information provider often leads to the failure of exper-
tise sharing [9]. People have very nuanced preferences concerning how and with
whom they like to share expertise and how they like to maintain control of their
social interactions [22].

The theory of social capital provides an analytic framework to understand this
decision-making process [17]. Social capital is the “sum of the actual and potential
resources embedded within, available through and derived from the network of rela-
tionships possessed by an individual or social unit” [36]. Social capital manifests
itself in forms of obligations, expectations, trust, norms of generalized reciprocity,
and reputations.

The feelings of expectation and obligation play important roles during the
process of deciding whether and when to help. Researchers see obligations and
expectations as complementary features [8] incurred during prior interactions that
create value for the community in the future [44]. In other words, when B helps A,
B would have a reasonable expectation that A will do something for B sometime
down the road, and that A would feel obliged to help B [8].

Answer Garden 2 [1] uses organizational and physical proximities in the selec-
tion process. STeP_IN [58] uses social relationships and nuanced perception of
individual relationships. Table 11.2 illustrates the different strategies used in the
selection steps.

Similar to STeP_IN, some tools give high priority to the individual preferences
for expertise communication. For instance, ReachOut [45] takes into considera-
tion factors such as the helper’s motivation to answer questions on the topic or
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Table 11.2 Selection strategies reported in Answer Garden 2 [1], STeP_IN [58] and other
strategies

Answer Garden 2 strategy STeP_IN strategy Other strategies

1. Organizational criteria 1. Inter-personal preferences of an
individual

– Communication
regency1-1 Keeping it local

1-2 Cross department 1-1 Exclude
1-3 Last resort 1-2 Include

2. Load on the sources 2. Obligation
2-1 Selection based on

regular workload
2-2 Selection based on

workload over time
3. Performance

3-1 Problem
comprehension

3-2 Providing a suitable
explanation

3-3 Attitude

2-1 Inter-personal obligation
(has been helped by the
information seeking
developer)

2-2 Total-social obligation (has
been helped by others in the
group)

3. External communication
history (has previously
communicated via email)
4. Random selection

– Organizational
hierarchy (relative
significance and
impact of the
information-seeking
developer to potential
helpers)

– Institutional secrecy
– Eager helper (very

motivated to help
others) [54]

to participate at this very moment, as well as the helper’s history of participation.
The availability of choices and options helps the development of favorable atti-
tudes toward expertise communication [46] and this favorable attitude is critical
for expertise communication.

Guideline #6: Expertise communication support mechanisms should minimize the
interruption when approaching those who are selected for communication.
When being approached to provide information for the benefit of another developer,
developers are likely to feel interrupted. Answering or providing help consumes the
time and attention of the helping developers and distracts them from their own tasks.

An interruption is regarded as an unexpected encounter initiated by another per-
son, which disturbs “the flow and continuity of an individual’s work and brings that
work to a temporary halt to the one who is interrupted” [51]. The cost of interruption
includes not only the attention spent on the interrupting event, but also the disrup-
tion of flow and continuity of the ongoing work [29] and the accompanied work
resumption efforts [28].

Expertise communication support tools, therefore, need to feature mechanisms
that would minimize interruption when approaching potential helping developers.
ReachOut [45], for instance, a chat-based tool for peer support, collaboration, and
community building, invites potential helpers to join a conference chat by pushing
the question to a nonintrusive client on their computer screens. Incoming questions
fade in and out until the user decides to answer.

The field of human-computer interaction has long been studying how to model
interruption between humans and computer agents [25]. Some parts of the models
and findings of such studies should be taken into account to achieve more effective,
less disruptive communication channels in support of expertise communication in
software development.
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In an attempt to minimize interruption for other developers by reducing the
number of those who are asked to help, one may not be able to get the needed
information. To address this issue, Answer Garden 2 has proposed the idea of
escalation of support [1]. When no answers are provided from the selected group
for a predefined period of time, the system automatically expands the recipi-
ents of the question to involve more people, larger groups, and a wider range
of areas.

Guideline #7: Expertise communication support mechanisms should provide ways
to make it easier for developers to ask for help.
Developers feel different levels of difficulty and ease, depending on to whom they
ask and through what communication channels. It is easy for developers to ask
peers for information through face-to-face communication because they know each
other, know how to approach each other, and have a good sense of how impor-
tant their question is in relation to what the experts seem to be doing at the
moment [23].

As Gerstberger and Allen report, “engineers, in selecting among information
channels, act in a manner which is intended not to maximize gain, but rather to
minimize loss. The loss to be minimized is the cost in terms of effort” [19]. Thus,
developers tend to choose face-to-face communication because it would be less
likely to be turned down, and to ask for help from coworkers whom they feel are
easy to access rather than from the most appropriate person in some cases. This
might end up in the wasteful use of a small set of “nice” people who keep helping
others even if they do not have the appropriate expertise.

Developers may immediately get the necessary information or may never get
any useful information, depending on how they ask. Rhetorical strategies, linguistic
complexity, and wording choice all influence the likelihood of others responding
[31] and replying to a question [3, 9].

Studies show that information-seekers demonstrate different asking behaviors,
depending on whether they are in public, in private, communicating with a stranger,
or communicating with a friend, due to the different levels of perceived psycho-
logical safety in admitting a lack of knowledge [9]. If every question asked would
always go to all members of the mailing list, the information-seeker would risk giv-
ing colleagues the impression that he or she is rather ignorant and incompetent [18].

The perceived social burden on a potential information-provider may affect how
easy it is for an information-seeker to ask a question. A field study of Answer
Garden reports that because the information-seeker’s identity was not revealed in
Answer Garden, the information-seeker felt less pressure in asking questions and
bothering experts [2]. It might also become easier for an information-seeking devel-
oper to ask a question when he or she knows that the recipients have the option and
freedom to ignore the request.

Reder and Shwab have noted that tactical skill in selecting communication chan-
nels “often determines an individual’s ability to influence and sometimes control the
course and direction of group tasks and impact the success of particular projects”
[41]. Expertise communication support mechanisms, therefore, need to consider
social factors that affect expertise-seeking behaviors and help software developers
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in their expertise communication if they do not have the tactical skill to select the
right communication channel.

Guideline #8: Expertise communication support mechanisms should provide ways
to make it easier for developers to answer or not to answer the information request.
Developers who receive the request for help in expertise communication need
to decide whether to answer. They may feel different levels of social pressure,
depending on from whom and through which communication channel the request is
coming. For instance, in direct emails, the receiver bears the interruption cost of the
reply or the social burden of taking no action [53].

The success of expertise communication should not come at the price of devel-
opers’ reluctance for further participation in future collaboration. Some developers
might get bored by answering repeatedly asked questions that they deem too simple
to be worth their time and expertise, and some might want to guard their unique
expertise to retain their “market value” in the organization [43]. The goodwill and
limited attention of developers should be economically utilized to achieve sustain-
able and long-term success. They should not be forced into helping just for fear
of causing unnecessary disruptions to the social cohesion and norms of the project
team, which is unlikely to be sustainable.

Unwillingness also leads to lower quality of communication. When workers are
forced into sharing expertise without much willingness, they often use “verbal and
intellectual skills as a defense to keep a person with a problem from consuming
too much of their time,” and their answers are often “impressive-sounding” but not
helpful [9] resulting in a waste of time for both parties.

Developers may respond to a question not because they want to answer it, but
because they do not want to ignore it. Even though helping is costly, taking no
action may incur a social cost. Saying “no” untactful to an information-seeking
developer deteriorates the expert’s relation with the seeker and negatively affects
the expert’s social reputation among other peers because such behavior deviates
from social norms [40].

The STeP_IN framework provides a communication mechanism called a
dynamic mailing list; a temporal mailing list is created every time an information-
seeking developer posts a question, with the recipients decided dynamically [58].
Whereas the sender’s identity is shown to the recipients, the recipients’ identi-
ties are not revealed unless they reply to the request. If some of the recipients
do not answer, for whatever reasons, nobody will know it; therefore, refusing to
help becomes socially acceptable, similar to “hiding out to get some work done”
[13]. If one of the recipients answers the question, his or her identity is revealed
to all members of the dynamic mailing list. This asymmetrical information dis-
closure is meant to reinforce positive social behaviors without forcing others into
collaboration.

Guideline #9: Expertise communication channels must be socially aware.
Socially aware communication [40] refers to the transmission of information or sig-
nals that does not violate social norms. Existing communication channels include



www.manaraa.com

11 Supporting Expertise Communication 233

face-to-face, direct email, mailing lists, wikis, bulletin boards, Internet relay chat
(IRC), telephone, or video conferences.

Different communication channels give various degrees of control to either the
information-seeking developer or those who are asked to provide information.
Decisions need to be made, depending on the goals and social context, about who
should gain the social control of communication.

One prime example of such control is the disclosure of identities of information-
seekers and information-providers. Different tools take different approaches in
designing such disclosure of identities. In a field study of Answer Garden that
had an information-seeker’s identity hidden and an information-provider’s iden-
tity revealed, the seekers felt easier asking and the information-providers felt
more “obliged” and tended to “show off” their expertise [2]. STeP_IN [58] in
contrast, makes a seeker’s identity revealed to those who receive the question,
whereas the receivers’ identities remain hidden unless they answer in a dynam-
ically formulated temporal mailing list. This design decision is based on the
viewpoint that the information-provider should be granted more control because
the information-seeker is the main beneficiary and the information-provider is the
benefactor.

Cohen et al. have investigated, through field studies of a legal firm, the phe-
nomena of adversarial collaboration, in which peers who are adversaries having
opposing goals nonetheless have to collaborate to get their tasks done [7]. They
argue that adversarial collaborations are “the sine qua non of situations that call
for the selective dissemination of information.” Although software developers in a
project are by no means adversaries and have no opposing goals, they may have
different interests and motivations in their own specific contexts, especially when a
project is inter-organizational or involves subcontracted members. Mechanisms for
supporting asymmetric disclosure of information may need to be designed within
expertise communication channels.

11.5 Concluding Remarks

This chapter has argued for a developer-centered CSDE where communication
is considered as a first-class activity in software development. We identified
two distinctive types of communication in software development, coordination
communication and expertise communication, and elaborated on their differences.

Communication support mechanisms have features that imply suitable communi-
cation genres [41]. Such features include whether the communication is one-to-one
or one-to-many; whether the communication happens synchronously or asyn-
chronously; whether the sender and the recipients are anonymous or identified;
whether all the relevant information is disclosed symmetrically or asymmetrically
among the sender, recipients, and others; whether the social control of communi-
cation is granted to the sender or to the recipient; whether the mechanism makes it
easier for the information-seeker or the recipient; and what media should be used,
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such as text, voice, video, or other types of multimedia, each of which demonstrates
different degrees of achievability and searchability.

Taking the above features into total consideration as well as the distinctive nature
of expertise communication in software development, we have presented a list of
nine design guidelines for supporting expertise communication in software devel-
opment. These guidelines are interdependent: following one guideline may also lead
to following a few other guidelines, or following one guideline may conflict with fol-
lowing another guideline. Each guideline is important in some particular context. In
designing expertise communication support mechanisms, one needs to understand
what corporate and organizational culture exists and what types of collaboration
their software projects want to nurture.

Although this chapter has argued to distinguish coordination communication
from expertise communication for supporting communication in developer-centered
CSDEs, it has not been our intention here to develop two different communica-
tion interfaces for developers. Developers presently do not and probably will not
want to distinguish the two; they simply want to communicate with their peers for
a variety of reasons. After identifying different sets of design guidelines in support
of coordination and expertise communications, the forthcoming research agenda
would involve how to integrate the two mechanisms so that developers would be
able to seamlessly engage in different types of communications without consciously
switching between the two.
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Part III
What We Know (and Do not Know) About

Collaborative Software Engineering

John Grundy

Software engineering must be practiced by people within organizations. Recent
trends in software engineering practice have resulted in much more complicated
issues around collaboration than in its historical context. Traditionally software
engineering was practiced by small teams – with a large problem decomposed via
divide-and-conquer methods into smaller teams – that were co-located, shared a
common methodology, used common techniques and tools, and could communi-
cate if not directly face-to-face then via leaders and managers face-to-face. While
collaborative software engineering in such a context is still very challenging, the
homogeneous team, process, method, tool and management structures greatly help.

New models of software engineering have made collaboration issues much less
straightforward. Multi-site software teams are very common to large organizations
[8]. Even smaller organizations may use outsourcing or use/contribute to open
source software projects [1], resulting in multi-site issues. Agile processes require
much more iterative build processes and higher levels of inter-team communication.
Many tasks conducted by teams may involve techniques and tools that need to be
shared [5]. An example is analysis tasks whereby a code base is analyzed to assist
understanding, fault-finding and/or evolution. Studies of practices in these domains
have greatly enhanced our understanding of collaboration issues [7]. However many
open questions exist in this domain.

A number of process models have been studied for their fit for multi-site, global
software engineering [9]. These have generally been characterized as light-weight,
medium-weight and heavy-weight in terms of centralized control and rigidity of
process. A variety of factors impact on an organizations choice of process approach
including size, culture, language, nature of project and size of project.

Two fundamentally different ways of decomposing multi-site process models are
Extended Workbench [8] and System of Systems [1]. In the extended workbench
approach a centralized management structure assigns remote teams units of work –
usually scoped design/code/test. In the system of systems approach, decentralized
teams work on different phases of a project e.g., a testing team, coding team, and
requirements team. Despite numerous studies of multi-site software teams it is still
unclear when to chose different models for the overall organization. In fact, carrying
out empirical studies for such multi-site teams to better inform us about team
organization is itself still an area of ongoing research.
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Communication and co-ordination models in software teams have been stud-
ied for many years [2]. Many studies have looked at the very interesting area of
free/open source software development [2]. Around an open source software prod-
uct grows a community of shared interest. A range of determinants exist as to
whether the project will be “successful” in terms of its outcomes. Socialization
must be supported among group members along with more traditional issues of
group communication and co-ordination of work. Open source/free software com-
munities have particular approaches developed to support these activities. Again,
despite numerous careful studies, it is still very unclear how to best foster social-
ization in such communities via best practice communication and co-ordination
strategies. Further analysis of co-ordination and communication and tool support
for proactively understanding these are areas of continuing research.

Many tasks must be distributed when undertaking collaborative software engi-
neering. Analysis tasks are often not those one thinks of when considering col-
laboration but are becoming more important to support in collaborative software
engineering contexts. Examples include mining histories of changes, versions, faults
and communication [6]. While more traditional software development techniques
have been supported by collaboration tools e.g., testing, requirements, architec-
ture and coding, traditionally analysis tasks have been limited to single-site and
team-owned artifacts.

Many analysis techniques are amenable to sharing across team boundaries and/or
results being used in a more collaborative fashion. How we go about identifying
tasks suitable for such collaborative support is still unclear. How we go about mak-
ing data suitably available for collaborative analysis is a challenge both in terms of
technical support and organizational artifact management. How analysis tools and
the techniques they embody can be effectively developed, shared and evolved in
cross-team and even cross-organizational boundaries is an area of active research
and emerging practice.

The three chapters in Part III consider various aspects relating to organizational
as well as team impact of collaborative Software Engineering practices. These range
from analysis tasks relating to (mostly) low-level software artifacts; communication
and co-ordination analysis and understanding relating to high-level communication
and organizational structures in open source software development projects; and
development processes applied to multi-site software engineering projects. Each
contribution tackles a different level of abstraction in collaborative software
engineering.

Chapter 12 by Ghezzi and Gall addresses the issue of supporting low-level arti-
fact analysis in order to abstract higher level structures and thereby understanding.
They describe a scenario of cross-task and cross-organizational artifact analysis sup-
port. They pose questions around how can a team effectively roll out such analysis
tools and share these tools between teams and organizations. A tool platform is pre-
sented which addresses this domain and allows cross-team and cross-organizational
analysis technique and support tool development and sharing. A service-oriented
approach supports analysis technique access and composition.
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Chapter 13 by Pinzger and Gall addresses the issue of understanding com-
munication and collaboration structures in open source software projects. They
propose a workbench to assist in the extraction, analysis and visualization of col-
laboration/communication relationships to support open source projects. This takes
data relating to collaboration and communication and enables teams to represent
this with a meta-model, extract appropriate data, carry out analysis of the data
and present it via a dashboard-style visualization platform. An evaluation of the
approach is presented.

Chapter 14 by Avritzer and Paulish reviews a set of commonly used software
processes for the domain of multi-site software engineering. They detail two pro-
cess models in particular and compare and contrast their relative characteristics and
merits. These are the workbench model whereby teams are assigned scoped work
by centralized control and a system of systems model whereby teams are organized
vertically according to expertise. A long running project is studied demonstrat-
ing how these process models can be rolled out and evaluation of the approaches
presented. Directions for future multi-site software team organization are
discussed.
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Chapter 12
Distributed and Collaborative Software Analysis

Giacomo Ghezzi and Harald C. Gall

Abstract Throughout the years software engineers have come up with a myriad
of specialized tools and techniques that focus on a certain type of software anal-
ysis such as source code analysis, co-change analysis or bug prediction. However,
easy and straight forward synergies between these analyses and tools rarely exist
because of their stand-alone nature, their platform dependence, their different input
and output formats and the variety of data to analyze. As a consequence, distributed
and collaborative software analysis scenarios and in particular interoperability are
severely limited. We describe a distributed and collaborative software analysis plat-
form that allows for a seamless interoperability of software analysis tools across
platform, geographical and organizational boundaries. We realize software analysis
tools as services that can be accessed and composed over the Internet. These dis-
tributed analysis services shall be widely accessible in our incrementally augmented
Software Analysis Broker where organizations and tool providers can register and
share their tools. To allow (semi-) automatic use and composition of these tools,
they are classified and mapped into a software analysis taxonomy and adhere to
specific meta-models and ontologies for their category of analysis.

12.1 Introduction

A common feature of many software analysis tools is that they focus on just a partic-
ular kind of analysis to produce the results wanted. If different analyses are required,
an engineer needs to run several tools, each one specialized on a particular aspect,
ranging from pure source code analysis, duplication analysis, co-change analysis,
bug prediction, to bug fixing patterns and visualization. All these techniques have
their own explicit or implicit meta-model which dictates how to represent the input
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and the output data. Thus the sharing of information between tools is only pos-
sible by means of a cumbersome export towards files complying with a specified
exchange format. Also, if there exist several analyses of the same kind (e.g., code
duplication analysis) there is hardly any way to compare the results or integrate
them other than manual investigation. Tool interoperability is hampered even more
by their stand-alone nature as well as their platform and language dependence. As a
consequence, distributed and collaborative software analysis scenarios are severely
limited.

12.1.1 Tools and IDEs

Lately, many software companies have been putting a lot of effort in tool integra-
tion to keep track and collect data on software development projects to enable and
promote seamless collaboration in all the development phases. The main goal is to
create a powerful and successful software development team collaboration platform
to integrate work across the phases of the development life-cycle done by different
actors. Examples for such IDEs are IBM’s Jazz1 or Microsoft’s Visual Studio Team
System 2010.2 Among the much functionality, they fully integrate work item man-
agement with source control, team processes, build and test case management. For
example, for a piece of code, change set information is provided why changes were
made (the associated work items), when it had some test problems, when it finally
made it into a release, who has been working on it, or what source code changes
were involved. But software analysis, and in particular release histories, are being
left out of the picture. Thereby, these IDEs gather a huge amount of data on the
development process but only a very little portion of it is then effectively used for
analysis purpose.

From a research perspective, throughout the years, we have developed several
tools to extract and analyze different types of data about a software project: its CVS
release history and Bugzilla data [7] its FAMIX model [5] its fine-grained source
code changes [9] its change types and couplings [8] and its developer networks [28].
All these tools are integrated into our software evolution platform called Evolizer
which allows them to communicate and share their data [10]. But what if we want
to add an external, already existing analysis, say a code clone detector? Not only we
would have to deal with language and platform dependency issues but even more,
we would have to take care of inter-domain integration of the data produced by the
new tool and the one already shared in our platform.

We argue that these challenges can be solved by means of service orientation.
In this chapter we present our approach towards a distributed and collaborative

1 http://jazz.net
2 http://msdn.microsoft.com/en-us/vstudio/bb725993.aspx
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software analysis platform that allows for interoperability of different soft-
ware analyses across platform, geographical and organizational boundaries.
Particular analyses are represented in software analysis taxonomy and adhere to
specific meta-models and ontologies for their category. They offer a common web
service interface that enables their composite use on the Internet. These distributed
analysis services are accessible through an incrementally augmented Software
Analysis Broker, where organizations and tool builders can register and share their
analyses.

Allowing disparate analyses to be available as web services and interoperate by
sharing their data would be highly beneficial for three reasons: (1) it can speed up
the collaboration of software engineers by being able to share their analyses and use
each others analyses with only little overhead; (2) not only tool builders but also
analyses itself could collaborate as web services and they could be composed into
chains of services or into more complex services with the web service composi-
tion language such as BPEL4WS; and (3) it would facilitate the uncovering of new
meaningful analyses based on a Software Analysis Broker.

12.1.2 A Scenario for Collaborative Software Analysis Across
Organizational and Tool Boundaries

Before going deeper into detailing our work, we briefly illustrate the challenges we
want to address and the potential impact of our work with the following software
analysis collaboration scenario:

Alice has developed a tool extracting the detailed CVS history of software projects to gain
better insights on the development process. Bob has a tool doing the same but with Bugzilla
data, and Charlie’s tool extracts the Famix model of a given object-oriented software project
by parsing its entire source code to obtain an unambiguous and precise language indepen-
dent representation of it. Each tool works on a specific platform and requires its own settings
and parameters.

Alice, Bob, and Charlie do not work for the same institution. They decided to unify their
efforts to thoroughly analyze the history of Foozilla; multi-million lines of code system, but
the communication overhead due to different data-models, different result data formats, and
storage media are too cumbersome to follow-up on their exciting plan. A unified software
analysis platform that would allow them to easily get a detailed holistic view of the history
of Foozilla: it would tell them for example for each release which bugs are related to specific
files revisions, thus providing a clear link between a bug and some specific source code files.
Bug prone parts, bug fixing and other source code change patterns would then be easy to
spot.

Based on this, new and additional analyses could be produced and offered on the same
platform. For example, Jane could then develop the analysis she always wanted to imple-
ment but lacked the right expertise and tool support. That analysis calculates source code
metrics (through its Famix model, without thus having to deal with the actual source code)
for each CVS release to spot code smells to both show their trend over time and their relation
to reported bugs and eventually show that into some nice navigable graphical interface.
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12.2 State-of-the-Art in Software Analyses

Software analysis is one of the key activities in software evolution as it allows one
to extract the most diverse and extensive information regarding a software system.
The classic analyses have been around for years targeting models and source code
[16]. In the last years many research groups have shifted their attention to software
evolution and the community of reverse engineering, reengineering, and program
understanding has actually acknowledged that evolution is indeed the umbrella of
their research activities. There is a plethora of research on software analysis, but it
is not our intention to give a complete picture of the state of the art. We just want to
sketch the type and range of analyses that can be integrated in our proposed service
platform. In this way we want to better contextualize our approach and show its
potential.

Approaches focusing on the software evolution either study its source code
change history, bug history, its underlying dynamics or a combination of them.
Fischer et al. [7] developed a release history database, combining information from
version control and bug tracking systems, namely CVS and Bugzilla to facili-
tate further analysis. Draheim et al. [6] had a similar approach but only worked
with version control data from CVS. Many other works detect and track changes
made on the source code during the software lifetime. Zou et al. [35] used origin
analysis to detect merging and splitting while S. Kim et al. [20] used it to track
function name changes. M. Kim et al. [21] focused on code clone evolution and
built a clone genealogy tool to extract code clones history from a project CVS
repository. Works by Zimmermann et al. [34] and Ying et al. [33] predict future
source code changes given past source revision history of a project stored into
CVS repositories to then recommend potentially relevant source code for a par-
ticular modification task. Source revision history is analyzed to extract also other
kinds of information. Livshits et al. [24] combine that with dynamic analysis tech-
niques to identify application-specific patterns and find pattern violation. Hipikat [3]
forms an implicit group memory combining CVS source repository data, Bugzilla
data, messages posted on developer forums and other project documents to rec-
ommend artifacts that are relevant to a particular task that a developer is trying
to perform. Gall et al. [11] extracted change couplings of software modules by
analyzing CVS data, in particular check in and check out time and the authors
of those actions; from that they were able to discover design flaws without ana-
lyzing a single line of code. Fluri et al. [8] focused on the extraction of several
fine-grained source code change types and the assessment of their significance
in terms of their impact on other source code entities and whether they may be
functionality-modifying or functionality-preserving. Then, Nagappan et al. [27] pre-
dicted defect density for a system using code churn metrics fetched from its change
history.

Similarly to the works on source code change, bug analysis addressed extrac-
tion of data from a bug repository (as in [7]), its prediction or its analysis. For that,
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Hassan et al. [14] developed a dynamic cache of the ten mostly error prone subsys-
tems (directories). Kim et al. [22] proposed a similar approach, but they dynamically
cached the most likely fault prone source code locations. Sliwerski et al. [29] related
version history and a bug database to detect, as Kim et al. code locations whose
changes had been risky in the past and annotated them with color bars to show their
risk rate. While much effort has been spent on software cost/effort prediction, very
little has been done on bug fixing effort prediction. As for example the work by
Weiss et al. [32] in which, for every new bug report in a issue tracking system, sim-
ilar earlier reports are fetched and their average time is used as a prediction for the
new one.

Not only has the history of a software development process been addressed, but
also its underlying dynamics. In particular, a lot of research has also been performed
on the role of the developers in evolutionary processes. For example, Čubranić et al.
[4] and Anvik et al. [1] both developed approaches for bug triaging that recom-
mend a list of developers with the appropriate expertise to solve a particular bug by
applying machine learning techniques on bug reports fetched from a bug repository
(i.e., Bugzilla). Mockus et al. [26] located people with desired expertise not using
bug reports but by analyzing data from change management systems. Gîrba et al.
[12] analyzed CVS logs to reconstruct code ownership to help in answering which
authors are knowledgeable in which part of the system and also reveal behavioral
patterns: when and how different developers interact in which way and in which part
of the system.

The use of web services and ontologies for software analysis and evolution
has been addressed only recently. A few works have used software analysis data
and concept representations with ontologies. Hyland-Wood et al. [15] presented
OWL ontology of software engineering concepts including classes, tests, metrics
and requirements. Happel et al. [13] in their KOntoR approach stored and retrieved
meta-data about software artifacts to foster software reuse. What is interesting for
us is that they proposed various ontologies to provide background knowledge about
software components, such as the programming language and licensing models.
Highly related to our approach is the work by Kiefer et al. [19] which proposed
EvoOnt, a software repository data exchange format including software, release and
bug related information based on OWL. To effectively mine software systems rep-
resented in that OWL format and find, for example, code smells, they introduced
iSPARQL; a query engine supporting similarity joins. From their work we bor-
row the idea of using ontologies to represent software analysis data to facilitate
data exchange and automatic reasoning. Jin and Cordy [17] with their Ontological
Adaptive Service-Sharing Integration System (OASIS) are the first and so far only
researchers that studied ontology based software analysis tool integration system
that employs domain ontology and specifically constructed external tool adapters.
They also implemented a proof of concept with three reverse engineering tools
that allowed them to explore service-sharing as a viable means for facilitating
interoperability among tools.
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12.3 The Software Service Platform

There is a huge variety of tools and techniques offering the most disparate analyses
of a software system, but it is impossible for researchers and software companies
to easily and effectively shares, combine and integrate them. What follows is the
description of how we tackle the problem.

12.3.1 The Software Analysis Broker Infrastructure

Figure 12.1 gives an overview of our approach, which is made up by four main con-
stituents: software analysis web services, an analysis services catalog, a Software
Analysis Broker and ontologies. Software analysis web services “wrap” already
existing analysis tools exposing their functionalities and data through a web ser-
vice. The analyses catalog classifies all the registered analysis services with respect
to specific software analysis taxonomy. The Software Analysis Broker web service
acts as the interface between the catalog and the users. Specific ontologies are used
to define and represent the data consumed and produced by the different analysis
services, while upper ontologies define much more generic concepts common to
several specific ontologies. Thus, they provide semantic links between them, which
otherwise would remain decoupled.

In the following, we explain these constituents in greater detail.

Fig. 12.1 Overview of our software analysis service platform
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12.3.1.1 Software Analysis Services

Our solution proposes software analyses to be available as web services. We decided
to leverage this paradigm over other competing middleware technologies as it is a
well known standard and it was devised to overcome some of the problems we
also face and thus already offers many of the features we need, namely: language,
platform and location independence and service composition.

Independence is achieved with the use of XML-based languages to describe
the services (WSDL) and a simple, lightweight communication protocol (SOAP)
intended for exchanging structured information, formatted into XML-based mes-
sages, in a decentralized, distributed environment, normally using HTTP/HTTPS.
Composition and orchestration is provided by BPEL4WS (Business Process
Execution Language for Web Services), an XML-based language designed to enable
task sharing for a distributed computing – even across multiple organizations – using
a combination of Web services. Moreover, because of these characteristics of loose
coupling, published interfaces and a standard communication model, existing appli-
cations can expose their functionalities through web services without significant
changes. The internal logic, the input and output formats used, the platform and lan-
guage under which the original tool runs remain the same but are hidden behind the
web service not being a burden for interoperability anymore [2, 31]. At last, with
the use of semantical annotated web services, they can be seamlessly integrated with
ontologies, whose usefulness and significance in our solution will be explained later.

12.3.1.2 Software Analyses Catalog and Taxonomy

With web services, we can easily share, use and combine different analyses across
organizational, geographical, platform and language boundaries through the Net.
But these services alone are not enough; they need to be kept track of and classified
in some sort of registry. This is why we created the Analyses Catalog, which is
used to store and classify all the registered analysis services so that any user can
automatically discover analysis services she is interested in, invoke them and then
fetch the results. To do that, a clear and univoque classification is essential. Based
on the existing software analysis techniques we developed specific software analysis
taxonomy to systematically classify the existing and future services. This taxonomy
divides the possible analyses into three main categories based on what aspect of a
software system they focus on:

• the development process,
• the underlying models, or
• the actual source code.

Software development analyses are further divided into those targeting the devel-
opment history (extraction, prediction and analysis of source code changes and
bugs), its underlying process (its dynamics and metrics, as the ones defined by
Lorenz et al. [25]) and the teams involved in it (their dynamics and metrics), as
shown in Fig. 12.2.
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Model analyses are further divided into those targeting the extraction, either
dynamic or static, of specific behavioral and structural model representations (UML,
FAMIX, call graphs, Rigi, etc.,) and those computing differences between two mod-
els, usually of two versions of the same system. Figure 12.3 gives a condensed view
of this part of the classification.

Code analyses, being the oldest and thus most studied topic of this taxonomy,
are further divided into many other categories, as for example those checking
code well-formedness, its syntactical correctness and its quality. For example, the
code quality category is then further divided into subcategories dealing with code
security, conciseness, performance and design. This last category contains, among
others, extractors and analyzers of design metrics, as defined by Lanza et al. [23]
and code-smells. We will not go further into details due to space limitations and as
it is beyond the scope of this chapter. But we decided to show at least the part about
code design quality as these analyses are essential in the field of software evolu-
tion analysis to study whether and how the quality of the system under examination
evolved.

This proposed taxonomy is obviously not the only one possible and by no means
complete. But the proposed categories are reasonable enough, in particular from the
perspective of a user who wants to find some particular analyses without struggling
with many and sometimes obscure categorizations. Since, to our knowledge, the
literature lacks any preexisting taxonomies of this kind, we structured it mainly
using the currently existing approaches as a blueprint and so that they would “fit”
reasonably well into that, but, as in any classification there are always individuals
that do not clearly fit in any category or fit in more than one.

12.3.1.3 Ontologies: The Need for Semantic Descriptions in Software Analysis

WSDL specifies a standard way to describe the interfaces of a web services, the
structure of their input and output and how to invoke them at a syntactic level.
However, there is no way to know what analysis a service actually offers. Each
specific service would then still structure its results according to its specific format
and following its own meta-model. Thus, the integration and combination of results
would still be at most possible with cumbersome manual ad-hoc data preparation
and transformation. A common exchange format providing a rigorous, univoque
syntax and semantic of data is indispensable. Several researchers have pushed for
common interchange formats such as GXL (Graph Exchange Language) or XMI,
but their efforts have remained largely unheard. Moreover, the existing exchange
formats focus only on the syntax of data, but do not address its semantic at all.

A promising alternative is to use ontologies, in particular OWL, to represent both
results and input data. First it gives us a sound and well known data format to use
and the ability to share that data between different types of computers using differ-
ent types of operating system and application languages, as it is written in XML.
Second, the properties related to its ontological nature make it really stand out from
all the other already existing solutions: (1) heterogeneous domain ontologies can
be semantically “linked” to each other by means of one or more upper ontology,
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which describe general concepts across a wide range of domains. In this way it is
possible to reach interoperability between a large numbers of ontologies accessible
“under” some upper ontology. In terms of software analysis services, it means that
results from the most disparate type could be automatically combined given that
they share some common concepts; (2) with the OWL Description Logic founda-
tion it is possible to perform automatic reasoning and derive additional knowledge;
(3) we can use a powerful query language such as SPARQL or its extension
iSPARQL [18] that uses similarity operators to query for similar entities; and (4)
in contrast to XML and XQuery that operate on the structure of the data, OWL
treats data based on its semantics. This allows for an extension of the data model
with no backward compatibility problems with existing tools.

Moreover, thanks to the recently introduced Semantic Annotations for WSDL
and XML Schema, web services and ontologies can be effectively integrated
together to create semantic web services. Semantic annotations can be attached to
any part of a web service definition, adding semantic meaning to it, as it is shown in
Fig. 12.4 (the semantic annotations are bold and circled).

The example highlights the reasons why this approach is useful for our purposes.
First the service itself can be declared to represent a particular concept of ontology,
in our case a CVS release history data extractor. Second, its inputs and outputs can
be declared of being concepts of specific ontologies and thus have a clear semantical
meaning. In the example of Fig. 12.4, since the service itself offers a CVS release
history, the output is then declared of representing a CVS history, as defined in the
ontology (we will show more details in Section 12.4). In this way we know precisely
what the service returns and what that means. Moreover, with all this information

Fig. 12.4 An example of a semantical annotated web service definition
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we can then check, for every new service being registered in our analyses catalog,
whether it supports inputs and provide results conforming to ontologies specific to
the analysis it is declared to implement (e.g., every CVS extraction service has to
return a CVS history).

12.3.1.4 Software Analysis Broker Web Service

The Software Analysis Broker acts as a “layer” between the catalog and the users,
through which they can query, update, manage the catalog (namely register, update
and unregister analysis services). They can even expand the taxonomy, as new types
of analyses that were not yet classified, or some modification to the already existing
classification, could come up in the future. More precisely, the Software Analysis
Broker can be queried to get the content of the analyses catalog (in other words,
the registered analyses) and if one or more specific analyses have been performed
on some project. We decided to offer just these two functionalities because those
two pieces of information are what a user might want to know in this context.
Furthermore, any additional information can then be fetched from a combination of
them. Those two queries are offered through a web service interface and the results
formatted into a standardized machine readable format, more precisely OWL. In this
way tools of any kind can (semi-) automatically fetch the analyses they need to then
call them without any human intervention. However, this makes the results hardly
readable by humans. So, we chose to let the Software Analysis Broker be queried in
the same way through a website, which will format and present the results in a much
more understandable form for human users. Therefore we will show the Software
Analysis Broker functionalities through its website interface, keeping in mind that
everything can also be done by calling directly the web service. The user, through
this interface, can either explore the catalog or query it. With the navigation option
she can get an idea of the analysis taxonomy structure or see what the analyses
being offered are (note that the classification used for the navigation is the same we
presented in the previous section). Using queries more specific information for the
successive invocation of the services can be gathered.

Figure 12.5 depicts what the Software Analysis Broker returns when queried for
the currently registered analyses: the current instance of the catalog. So for every

Fig. 12.5 The registered analysis services
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service is reported the name, the address through which it can be invoked and the
type of analysis offered. Knowing the latter gives the user all the information on
the service input and output. In fact, as we explained in the previous section, every
analysis type is associated with ontologies to which the input and output of the
service offering that must conform. Thus with this query it is possible to know what
analyses can be performed and gather all the information needed to then call the
desired ones. So it will be used when a user or a tool, given a project, wants to
conduct some analysis and has to know who is currently offering it.

Figure 12.6 shows what the Software Analysis Broker returns when queried to
find out if one or more types of analysis were performed on some projects. Note
that for all the projects is displayed whether or not every single requested analysis
has been already performed, without explicitly showing what is the actual service
that did it. In fact, as long as it is performed, it does not really matter who performed
the analysis since, as we explained before, all the services offering it will comply
to a common output (both syntactically and semantically). Nevertheless the address
of the actual service offering the analysis is simply hidden by the HTML repre-
sentation behind the “check” symbol. So it can be immediately invoked to get the
available data without having to query the Software Analysis Broker for any other
information.

All this information allows one to see what data about a project is already avail-
able to then fetch it or trigger the analysis to produce it. Furthermore, it can be handy
for tools and users that need case study data from existing projects to then run their
own analysis. For example, a tool extracting some newly defined software project
metrics might need CVS history data of software projects for case studies and proofs
of concept for validation. So, instead of finding suitable projects and extracting their
CVS data by itself, it could take advantage of the previous analyses and thus just
fetch the data that has already been extracted by the registered services offering CVS
data extraction. Moreover, with the Software Analysis Broker web service, we can
add more complex functionalities, such as service composition, on top of the anal-
yses catalog which would allow us to fully exploit our platform. For example, if a
user wants a series of analyses performed on a project, she would have two options.
She could search the catalog for the desired analyses, compose them through a web
interface and then execute them; or she could let the Software Analysis Broker take
care of finding, composing, executing them (for example with BPEL) and then just
get the final results once the whole process is done.

Fig. 12.6 Software Analysis Broker list of analyses and projects
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12.4 Software Analysis Services at Work

Now we present an excerpt of software analysis services that we have implemented
and show how they can be orchestrated to solve the task outlined in our analysis
scenario. All services exploit techniques and tools that have been implemented by
our group comprising the CVS importer, Bugzilla importer, and FAMIX parser. For
each service we show its semantical annotated definition and the ontologies of the
needed input and generated output data.

12.4.1 CVS History Extractor Service

This service extracts the versioning information comprising release, revision, and
commits information from a CVS repository. Figure 12.7 shows the definition of
the web service. The service belongs to the “CVS_Extraction” category of our tax-
onomy, as it is declared by the WSDL element framed by box number 2. As such it
needs a URL as input that specifies the location of the CVS repository. When run-
ning it connects to the repository, obtains and processes the CVS information and
outputs the resulting data model in the format specified by the CVSHistory ontology
(see WSDL element marked with 1).

The core concepts of the CVS History ontology are depicted in Fig. 12.8. In
addition to the directory structure, the importer obtains, for each file, all its revi-
sion information and corresponding modification reports. They basically contain

Fig. 12.7 Excerpt of the WSDL definition of the CVS Importer service
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Fig. 12.8 High-level view of the CVS history ontology

the information on who changed when/which source file and how many lines have
been inserted/deleted. That data is stored as RDF triples and a reference is provided
to the user for accessing it. The reference can be queried from the Software Analysis
Broker so that the processing of particular CVS repositories needs to be done only
once. Any subsequent request can use the saved triple store.

12.4.2 Bugzilla Extractor Service

This service extracts problem reports and change requests from a Bugzilla repos-
itory. Due to space limitations, we cannot show its WSDL definition, which is
similar to the one we just showed for the CVS importer. The service belongs to the
“Bugzilla_Extraction” category which is a subcategory of generic bug extraction
services. Similar to the CVS Importer service, it needs a string denoting the URL
of the location of the Bugzilla repository as input. When run, the service accesses
the Bugzilla repository to derive the problem reports and change requests in XML
format, parses them and stores the result as RDF triples. The triples conform to the
ontology shown in Fig. 12.9.

Optionally, the client of the service can provide a reference to an already
imported CVS model. When the reference is given, the service runs a procedure
that establishes the links between CVS Revision and Issue entities. As no standard
to report a bug fix or a reference to a bug in the CVS commits is enforced (usually
the developers add the related bug reference number in the commit message), in
order to effectively reconstruct those links, some heuristics are needed. Our service
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Fig. 12.10 High-level view of the Issue Tracking-Cvs links ontology

can be configured to use several of them, from very simple to more structured ones,
such as the one proposed by Sliwerski et al. [30]. That inferred linking data is struc-
tured as an instance of the simple ontology shown in Fig. 12.10, which basically
associates each extracted Bugzilla issue to all its related CVS revisions of the CVS
History that was passed as input and vice versa. Also these links are stored as RDF
triples with the ontology referenced by the element marked 3.

12.4.3 Famix Model Extractor Service

Like the Bugzilla Extractor, this service requires as input a project CVS history
data. Given that information, it then fetches, for each project release, its source
code and parses it to get the related Famix model and transforms it into a specific
Famix ontology, shown in Fig. 12.11. That data is then returned as the output of the
service and stored as RDF triples. The CVS history this service requires as input
is not only used to know and fetch all the releases of the project of interest, but it
is used also to create links between the CVS history and the Famix Model created.
This information is represented using the ontology shown in Fig. 12.12. The links
keep track of all the CVS revisions in which a Famix Class (which represents the
generic OO class concept) was modified and vice versa. From the Class entity all
the remaining information on its related Famix Model can be easily fetched and in
the same way, from its linked Revision, all the associated CVS information can be
gathered. As before, the data is returned as part of the service output and stored as
RDF triples.

12.4.4 An Interoperability Scenario

If we come back to the analysis scenario we presented in Section 12.1, the services
we introduced before are more or less the ones that Alice, Charlie and Bob agreed to
offer after their meeting. So, what happens when they are integrated in our Software
Analysis Broker platform and a user, in our case the fourth person of the scenario,
Jane, comes into play?

As a first step she needs to check what is available on the catalog and in particular
whether services offering the required analyses exist and are registered. In order to
do that she queries the Software Analysis Broker to see whether some CVS history,
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Fig. 12.12 High-level view of the Famix-Cvs links ontology

Bugzilla history and Famix extraction services are available. Then, by fetching the
semantically annotated WSDL file for each of them, Jane can learn what input data
needs to be supplied and what is their expected output. So in this case she finds
out that in order to get all the data she wants, first she needs to call the CVS History
Extractor and then, once the results are ready, provide them to the Bugzilla Extractor
and the Famix Model Extractor so that they can carry out their analyses, as they
require CVS History data to perform their analyses. She can do this all by herself
by getting the reference to the services and invoking them in the required order and
with the right inputs. Or, even better, she instructs the Software Analysis Broker
to compose those three services into a BPEL workflow and have it run on a BPEL
engine, which will actually take care of the whole flow, passing the data from one
service to another, as we mentioned in Section 12.3.1. In this way she only needs
to specify how to compose and run the different services without having to deal
with and know BPEL itself. In this case the whole execution of the services is more
or less automated. This is useful for the combination of time consuming analyses,
either for the type of the analysis itself or for the analyzed system size.

In Jane’s case, the body of knowledge that she’s eventually able to get is shown
in Fig. 12.13. Note how all the ontologies are linked thanks to the links between
the CVS and Bugzilla data and the CVS and Famix data. She can then proceed
to examine that huge amount of data and fetch all the information needed for her
analysis using SPARQL queries or any other approach of her choice. By querying
the Famix data of every project release she can extract all the source code metrics
she needs to spot possible code smells and then get all “smelly” classes. Due to the
links established between the Famix and the CVS data she can get for any of those
classes all their revisions and from there, with the links between the Issue Tracking
and the CVS data, get all the issues associated to them. With that data she can then
run her own analysis on the relation between code smells and bugs: to see whether
code smells caused the emergence of bugs and/or bug fixing reduces the amount of
code smells.

The same job, without our platform would have required the installation and
configuration of at least three different tools, the ad-hoc transformation to and from
the different formats used by them and the manual linking of that different data (or
developing an ad-hoc tool to do that). On the other hand, with our solution, it boils
down to the invocation of just a few web services and some SPARQL queries, with
no tedious and error prone data preparation, code modification, etc.
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12.5 Conclusions

The combination and integration of different software analysis tools is a challenging
problem when we need to gain a deeper insight into a software system’s evolu-
tion. For every required analysis a specialized tool, with its own explicit or implicit
meta-model dictating how to represent the input and the output has to be installed,
configured and executed. Even if different analyses of the same kind exist, the only
way to compare them is to do it manually.

Our approach solves that problem with a combination of ontologies and web ser-
vices for software analysis. Using web services to expose the functionalities offered
by the analysis tools gives us independence from platform, language and location.
Further we can apply well-known mechanisms of service composition and orches-
tration (e.g., BPEL4WS) of several analysis services. OWL ontologies specific to
distinct types of analyses allow us to have standard formats to define and repre-
sent the data consumed and produced by the analysis services, which can then be
integrated with each other based on semantic “links”. These links are provided by
generic, upper ontologies. With semantically annotated web services, we can for-
malize for each service the actual ontological concepts and its input and output by
just adding a few annotations in the service definition. Moreover, it is then possi-
ble to support (semi-) automatic composition of services based on the semantics of
their input and output. And due to OWL’s powerful query language SPARQL and
its Description Logic foundation, data can be extracted and additional knowledge
can be inferred with existing tools.

Allowing disparate analysis tools to collaborate with each other and share their
information via a service platform can be highly beneficial. Research groups and
individuals can share and exploit each other’s expertise and knowledge on software
analysis with only little overhead, in a standard, unambiguous way, thus avoiding
reinventing the same wheels over and over again. Moreover, from a software engi-
neer point of view, not only it will enhance and speed up the work by providing
access to a big amount of information without the need to install several tools and
to cope with many output formats, but it would also promote the uncovering of new
meaningful and interesting metrics deriving from the most diverse types of analysis
that can finally “talk” and collaborate with each other.

The work we have presented is a major endeavor and as such still work in
progress. However, everything shown here is part of already existing prototypes
that we developed. The Software Analysis Broker and the services, along with all
their related ontologies, have been realized and extended into full-fledged web ser-
vices so that they can be used by outside users. The (semi-) automatic composition
of services using semantics has not been implemented yet but we have started to
address it. This is because first we wanted to have an initial version of the whole
infrastructure up and running with just a few services registered. This should point
out the possible problems and issues to guide subsequent improvements and to show
the feasibility and usefulness of the approach. In this way also external users could
start using our own analyses to see how it works, grasp its potentials and may be
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integrate their own tools. In fact, since it is a platform for distributed and
collaborative software analysis, we would like to have other research groups share
their analysis approaches through our platform, and thereby leveraging it.
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Chapter 13
Dynamic Analysis of Communication
and Collaboration in OSS Projects

Martin Pinzger and Harald C. Gall

Abstract Software repositories, such as versioning, bug reporting, and developer
mailing list archives contain valuable data for analyzing the history of software
projects and its dynamics. In this chapter, we focus on the analysis of the communi-
cation and collaboration in software projects and present an approach that works on
software archives with social network analysis techniques. Our tool called STNA-
Cockpit provides both, a meta-model to represent communication and collaboration
and a graph visualization technique to interactively explore instances of the meta-
model. These instances are reconstructed from CVS, Bugzilla, and mailing list data.
In a case study with the Eclipse Platform Core project data we demonstrate that
with STNA-Cockpit one can observe project dynamics for certain periods of time.
This allows, for example, project managers to early identify communication bottle-
necks, contributor and expertise networks, or to understand how newcomers can be
integrated fast and efficiently into their team.

13.1 Introduction

Communication and collaboration among team members are key success factors for
large, complex software projects. In addition to industry, examples of such projects
can be found in the Open Source Software (OSS) community, for example, the
Mozilla, Apache, Eclipse projects. OSS projects are of particular interest for com-
munication and collaboration research because their developers rarely or never meet
face-to-face.

Findings of previous research showed that OSS developers coordinate their
work almost exclusively by three information spaces: the implementation space,
the documentation space, and the discussion space [6]. Typically, in OSS projects
a versioning system, such as, the concurrent versions system (CVS), provides the

M. Pinzger (B)
Software Engineering Research Group, Delft University of Technology, Netherlands
e-mail: M.Pinzger@tudelft.nl

265I. Mistrík et al. (eds.), Collaborative Software Engineering,
DOI 10.1007/978-3-642-10294-3_13, C© Springer-Verlag Berlin Heidelberg 2010



www.manaraa.com

266 M. Pinzger and H.C. Gall

backend of the implementation space. It keeps track of changes made to projected
related files and corresponding versions. The World Wide Web is used as the pri-
mary documentation space. Because of the distributed and informal nature of OSS
projects, discussions between project members, project associates, and users are
done and tracked in mailing lists and bug reporting systems. This results in a rep-
resentative data set that enables communication and collaboration analysis. The
representative data in OSS projects as well as its public availability motivated us
to develop the Socio-Technical Network Analysis (STNA)-Cockpit. However, our
approach is not limited to OSS projects. It can also be applied in industrial settings
in which such data is available.

STNA-Cockpit provides means and techniques to obtain a deeper insight into the
communication and collaboration structure of software projects. In particular, we
use STNA-Cockpit to address the following research questions:

• Who owns or is working on which components?
• Who are the key personalities (e.g., leading developers) in the project?
• Are there deviations in the developer contribution structure?

We address these questions by analyzing the communication and collabo-
ration structure that is reconstructed from versioning archives (implementation
space), bug tracking and mailing list archives (discussion space). We leave out the
documentation space whose analysis is out of scope for this chapter.

In summary, the chapter makes three contributions, of which the first one is a
meta-model for representing communication and collaboration in OSS projects. We
briefly describe the set of techniques and tools for importing the data and further
present the heuristics that are used by STNA-Cockpit to integrate the various data
sources into the communication and collaboration network.

The STNA-Cockpit approach is our second contribution. STNA-Cockpit uses
a graph-based visualization technique to analyze the communication and col-
laboration structure. Properties of the communication between developers and
collaboration on software components are mapped to graphical attributes in the
graph. This results in a number of graph structures that form visual patterns which
indicate, for example, team organization, the key personalities in the project, or the
owners of source code components. Furthermore, these patterns also indicate viola-
tions in the communication and collaboration structure, such as, isolated developers
or alien commits. In addition, STNA-Cockpit provides facilities to dynamically
browse the communication and collaboration network over time. It uses a sliding
time window approach that allows the user to navigate back and forth in the project
history. This enables the observation of changes in the communication and collabo-
ration structure. For example, it shows how newcomers get involved in the project,
or how leading developers hand over their job to their successors.

We demonstrate the benefits of our integrated meta-model and the STNA-
Cockpit approach in a case study with the Eclipse Platform Core project. This
is our third and last contribution. Results of the study show how STNA-Cockpit
can be used to find out, for example, the roles of different developers, such as,
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communicators and connectors, and how a new developer got socialized. The
STNA-Cockpit approach proves useful to aid project leaders in observing and con-
trolling the communication and collaboration structure in software projects and can
provide an integral part in collaborative software engineering.

The remainder of the chapter is structured as follows: The next section presents
related work of social network analysis in the software engineering domain. Section
13.3 describes the concepts for modeling communication and collaboration in OSS
projects and the techniques to reconstruct them from raw data available for OSS
projects. Section 13.4 introduces the STNA-Cockpit approach and its graphical lan-
guage. The evaluation of STNA-Cockpit with the Eclipse Platform Core project is
presented in Section 13.5. And, in Section 13.6 we draw conclusions and outline
future work.

13.2 State-of-the-Art in Socio-technical Network Analysis

The public availability of project data made OSS projects to one of the most stud-
ied subjects in the software engineering research community. In [7] Karl Fogel
presents a number of guidelines to manage and the technical infrastructure to run
OSS projects. In the context of this chapter, the technical infrastructure of OSS
projects is of particular interest. It basically consists of a versioning system, bug
tracking system, and mailing lists for the communication and co-ordination of work.
Communication between developers and users takes place in discussion forums
and the bug tracker. Topics range from bug fixes, feature requests, to hints for
the installation and usage of an application. The source code typically is man-
aged with a versioning system, such as, CVS or subversion. They keep track of
changes in the source files and project documents and are also used to mark soft-
ware releases. While the “large” projects, such as, Eclipse and Mozilla provide their
own infrastructure many OSS projects are hosted by development web sites, such as,
SourceForge.net. Recent research results and emerging opportunities in OSS devel-
opment are presented by Scacchi in [20]. We would like to refer the reader to this
publication to get a deeper insight into OSS development.

The various data sources available from OSS development web sites formed the
input to several studies of organization, communication, and co-ordination aspects
in software projects. For example, Crowston et al. [5] used data from developer
mailing lists and online forums of three active projects to analyze co-ordination
mechanisms of OSS communities. The analysis is based on the Co-ordination
Theory Approach framework [15]. They found similarities between OSS groups
and reported practices of proprietary projects in the co-ordination mechanisms used
to manage task-task dependencies. Differences were found in the co-ordination of
task-actor dependencies. In particular, “self-assignment” was the most common
mechanism used in OSS projects. Later on, Howison et al. [11] took a closer look at
the dynamics of the social structure by applying social network analysis over time.
They used data obtained from the SourceForge.net bug tracking repository. Results
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of their analyses showed that most of the participants are involved in the project for
only a short period while few participants are involved for longer periods.

Similar to our approach, Ducheneaut [6] analyzed the socialization of newcomers
to the OSS community of Python, showing that the integration of a new member
is not only depending on her technical skills but also on her ability to learn how to
participate and to build an identity for that her ideas will get accepted and integrated.
He combines the social network built from the mailing list archive with the material
structure based on CVS log. To visualize the project’s evolution he implemented the
OSS Browser, which provides a dynamic view of the social network, built on the
Conversation Map of Sack [18].

Sack et al. [19] continued this research field with an analysis across the three
information spaces that build the socio-technical network: discussion, implemen-
tation, and documentation. They tried to answer the questions how power is
distributed, how links evolve between people, and how the cognitive activity of dis-
cussions is influenced by the social and governance structures of the project. Mails,
CVS logs, and enhancement proposals of the Python project served as data basis.
Similarly, Bird et al. presented a study in which they analyzed the process by which
people join open source projects [3]. Results support their hypotheses that the rate
of immigration is non-monotonic, and that technical skill and social reputation has
an impact on becoming a developer. In our approach we reuse several of the ideas
presented by these approaches

Several other studies used data from OSS projects to analyze communication
and co-ordination aspects. For example, Ghosh showed that many open source
projects hosted at SourceForge.net are organized as self-organizing social networks
[9]. Similarly, Xu et al. studied the development community at SourceForge.net
and classified contributors into project leader, core developer, co-developer, and
active user [21]. Huang et al. used version histories to identify core and periph-
eral development teams [12]. Ohira et al. used social networks and collaborative
filtering to support the identification of experts across projects [17]. Lopez et al.
explored statistics and social network properties of the development community at
SourceForge.net to find collaborations and topological properties [14]. In particular,
they found small world phenomenon and scale free behaviors and also that weakly
associated but contributing co-developers and active users may be important factors
in open source software development.

Network visualization is a well-researched field and there exist a number of
sophisticated frameworks and tools to visualize social networks, for example, Pajek
[2] or Net Draw which is an integral part of the social network analysis tool Ucinet
[4]. While these tools can visualize various kinds of social networks including also
socio-technical networks, none of them takes into account evolution. Similar to our
approach, Ogawa et al. [16] presented a visualization technique to analyze the evo-
lution of the communication and collaboration activities of software projects. They
used data from CVS repositories and mailing list archives. The visualization is based
on combining the repository view and the mailing list view via people. The repos-
itory is represented using the Windows Explorer tree visualization and the mailing
lists are displayed as clusters within Sankey diagrams.
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Aberdour [1] addressed the question on how to achieve OSS quality by compar-
ing best practices of OSS development with closed-source software development.
He reported that high-quality OSS relies on having a large and sustainable commu-
nity that has to be fully understood by the community members. The final guidelines
to high-quality OSS imply high code modularity, rapid release cycles and many bug
finders. His findings on quality justify our aim at providing means for a better under-
standing of software project dynamics, in both open and closed source software
projects.

13.3 Modeling Communication and Collaboration
in OSS Projects

In this section, we outline the motivation and present the means and techniques to
analyze the interactions of a software project team. The main focus is on the question
about the inner life of the project that consists of people playing different roles and
of the products they develop. The collaborative interaction among the project mem-
bers is reflected in the organization and has an influence on the project’s outcome
and its environment. The social structure of a community, based on communication,
is combined with collaboration information representing working teams. This inte-
gration enables to further investigate the activities going on inside the project. The
developed means and techniques are based on analyses of OSS communities, but
they can be adapted to commercial projects as well.

13.3.1 Communication in OSS Projects

Open source software projects typically have no formal organization and pre-
assigned command and control structure. Team members can join projects and
contribute as they wish. This demands organizational instruments to share and
exchange information. Bug tracking systems, such as Bugzilla, are used to manage
bug reports and development tasks. Internet mailing lists are instruments to address
information to a dynamically changing community. A mailing list has a list of sub-
scribers receiving the messages processed by the reflector address. We assume that
most of the core developers of the community interact using such designated tools.
This section shows how we derive a model of the communication in OSS projects
from Bugzilla and mailing list data.

13.3.1.1 Deriving Communication Paths from Mail Traffic

Communication in mailing lists happens on a subject/topic between a sender and at
least one receiver at a certain point in time with a given content. Discussions arising
from an initial mail can be grouped into threads – mails referring to the same subject
are kept together. Within mailing list threads, the messages can grow in a dendritic
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Fig. 13.1 Communication paths extracted from the Eclipse Platform Core developer mailing list

way. Figure 13.1 shows an excerpt of a mail thread from the online mailing list
archive of Eclipse Platform Core.

A mail addressed to a mailing list is processed by the reflector and sent to all
subscribers. This means that the To: address is always the mailing list address
itself; hence, there is no explicit receiver address. In our example this address is
platform-core-dev. To model the communication path between sender and receiver,
the receiver needs to be reconstructed from subsequent answering mails. The iden-
tification of the sender is given by the From: field which is denoted by the name on
the right side of a message. For determining the receivers of emails we analyze the
tree structure of a mail thread and compute the To: and Cc: paths.

Figure 13.1 illustrates the two paths in our example thread whereas gray arrows
denote the To: path and light gray arrows the Cc: path. A gray arrow is established
between an initial mail and its replies. For example, Philippe Ombredanne is first
replying to the mail of Thomas Watson, so in this case Philippe Ombredanne is the
sender and Thomas Watson is the receiver of the mail. To derive Cc: receivers we
consider the person answering a mail as an intended receiver of this mail. In case this
person is already the To: receiver (as it applies with the mails number 3–5 between
Bob Foster and Pascal Rapicault) no additional path is derived, because we assume
that a mail is not sent to a person twice.

For importing the data from the mailing lists archives we extended the iQuest
tool. iQuest is part of TeCFlow,1 a set of tools to visualize the temporal evolution
of communication patterns among groups of people. It contains a component to
parse mailing lists and import them into a MySQL database. Our extension aims at
including the follow-up information of mails to fully reconstruct the structure of a
mail-thread. The sample thread shown above consists of 15 mails that result in 25
communication paths.

13.3.1.2 Deriving Communication Paths from Bug Reports

The second source outlined for modeling communication paths is a bug tracking
repository, such as, Bugzilla. Bugzilla users create reports and comments and give

1 http://www.ickn.org/ickndemo/
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answers to former editors or commentators. Within a Bugzilla bug report, a person
can play different roles: (1) the reporter that opens and describes a problem; (2)
the assigned developer who takes over the ownership or current responsibility; (3)
a developer on the Cc: list who wants to be kept informed; or (4) a person that
comments on the report.

Similar to mailing lists, communication in bug reports consists of a sender, at
least one receiver, a time stamp, the subject, and the content of the message. For
the reconstruction of communication paths we consider two actions: creating a bug
report and writing a comment. The communication emerging from report creation is
the assignment of the task to the assignee by the reporter and the notification of the
persons registered as Cc: The subject of the communication is the short description
and the content is the long description of the bug report.

Comments result in further communication. Each commentator addresses their
comment to the reporter, the assignee, and all former commentators. This approach
differs to the one of Howison et al. [11] where only a communication to the imme-
diate previous poster was assumed. The subject of communication is denoted by the
short description and the content by the comment. Regarding communication with
Cc: addressees, we assume that if somebody is concerned he or she will get involved
as a commentator.

We use the Bugzilla importer of Evolizer [8] to obtain the bug report data from
Bugzilla repositories. Given the URL of the Bugzilla repository the importer down-
loads the bug reports in XML format, parses them and stores the results into the
Evolizer database. We next query each bug report from the database and reconstruct
the communication paths as illustrated before. Regarding our example we recon-
structed 36 communication paths, including three Cc:’s. In general, we expect more
communication paths in bug reports than in mailing lists archives.

13.3.2 Collaboration in OSS Projects

To model the collaboration in a project, we need to know who is or was working
on which component of the system. Versioning repositories, such as CVS, provide
details about code revisions that enable to derive this information. The minimal
information required is the author of the modification and the affected file. For each
revision the time stamp of the CVS commit, the corresponding commit message and
the extent of the file modification (number of lines added and deleted) are extracted
from the CVS log. We use the Evolizer CVS importer plug-in to obtain the CVS
log information from online repositories. The importer parses the CVS log of each
source file and stores the extracted information into the Evolizer database.

In addition to the collaboration of developers on source files, we are interested in
the ownership of source files. This enables the analysis of the interaction between
the developer and the owner of a file, and, in particular, how the communication
between the two proceeds. Girba et al. propose a measurement for the notion of code
ownership by evaluating the CVS log [10]. They define the owner of a source file as
being the developer that contributed the most code lines to it. For each source files
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revision and author the difference between the number of lines added and number
of lines deleted is computed. The sum of these deltas presents the contribution of a
developer.

We extend the approach by Girba et al. by also taking into account the initial
files size that refers to the initial contribution of the first developer. Experiments with
CVS information from the Eclipse project showed that, when taking into account the
initial number of lines of code, the number of owner changes is reduced by around
88%. With this we can more realistically reflect code ownership relationships.

13.3.3 Integrating Communication and Collaboration Data

The person is the central entity in communication and collaboration data as obtained
from mailing lists, Bugzilla and CVS data. Therefore, we use the person to link the
three data sources to obtain a consistent view on the communication and collab-
oration in software projects. The underlying data sources, however, have different
approaches regarding the identification and characterization of a person. The per-
sonal information appearing within CVS logs, bug reports, or emails are the name of
the person, the email address and the CVS user name. The objective of the integrated
data model is to unify this person information so that each person is represented by
exactly one entity in the model. Figure 13.2 depicts the meta-model to represent the
integrated CVS, Bugzilla, and mailing list data.

The person entity is in the center of the model and links CVS with Bugzilla and
mailing list data. The possible roles of a person are highlighted by arc labels which
are author of source code contributions, owner of source files, reporter of a bug,
assignee, and person on the Cc: list, and commenter of a bug report, and sender,
receiver of an email. Furthermore, we establish a link between Issues and affected
source file revisions.

In the virtual world of the Internet it is easy to create different identifiers for a sin-
gle person. For CVS, Bugzilla, and mailing lists archive data this concerns the use of
different email addresses. For example, Chris McGee uses cbmcgee@ca.ibm.com,
jeffl@informaldata.com and sirnewton_01@yahoo.ca as his email addresses. The
mapping of these addresses to a single person is a non-trivial task.

We follow a semi-automatic approach: For each person entity extracted from
an email, CVS log, or bug report, the matching algorithm first looks up the email
address in the database. If a person with the same email address exists, the person is
assigned to the corresponding revision, issue, comment, or email. If not, the email
address is analyzed to extract the person’s name. Our algorithm assumes that a name
consists of at least two words and that they are separated by a dot or underscore
within an email address prefix. In some cases such a name cannot be derived from
the prefix, because, for example, it denotes an email distributor address, an alias, or
a nickname. In case the name could be extracted, the algorithm searches the corre-
sponding person in the object model. For this our algorithm uses the Levenshtein
string similarity measure [13]. If a person object with a similar name is found in the
object model, the new email address is added to the list of email addresses of this
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Fig. 13.2 Integrated model for representing communication and collaboration data in OSS
projects

person. In every other case the person is assumed to be unknown and a new person
entity is added to the database.

While this algorithm works fine for person information obtained from Bugzilla
and mailing lists, there are problems with matching persons obtained from CVS log
data. Typically, the author stored in CVS logs indicates the CVS user name, but not
the real name of a person. Because of the high number of false matches, the mapping
of these persons is done manually.

In addition to the information of a person, email addresses contain domain infor-
mation that, for example, denotes the business unit of a developer. We use this
information to assign developers to teams. We obtain email addresses that have
been generated with MHonArc.2 The problem is that MHonArc provides a spam
mode which deters spam address harvesters by hiding the domain information of
email addresses. For example, the email address of Chris McGee is displayed as

2 http://www.mhonarc.org/
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cbmcgee@xxxxxxxxx. In such cases our matching algorithm searches the alterna-
tive email addresses of a person to reconstruct the missing domain information. We
furthermore do a manual inspection of the results to assure the correctness of the
matching’s.

13.4 STNA-Cockpit

The objective of STNA-Cockpit is to enable an understandable perception of the
project’s set-up and to illustrate its dynamics by exploring the evolution of the
communication and collaboration structure interactively. The user can either inves-
tigate a particular period in time or move through time by shifting the observation
period forward and backward. Figure 13.3 shows a sample view of a socio-technical
network graph as created by STNA-Cockpit for the Eclipse Platform Core project.

Various graphical features are utilized to convey information concerning the
communication and collaboration structure. Basically, nodes in the graph represent
persons or work packages. Edges illustrate the communication between people or
the collaborations of developers on work packages. In the following, we present the
various graphical features and visual patterns used by STNA-Cockpit.

John Arthorne

Dj Houghton

Daniel Megert

Rafael Chaves

Darin Wright

Dirk Baeumer
Darin Swanson

PascaRapicaultl 

Erich Gamma

Jeff Mcaffer

Martin Aeschlimann

Jared Burns

Debbie Wilson

Luc Bourlier

org.eclipse.core.runtime

org.eclipse.core.resources

Fig. 13.3 Socio-technical network graph of the Eclipse Platform Core project
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13.4.1 Actors

An actor can play different roles within the project: project member, source file
owner, new source file owner. A project member is illustrated by a gray actor node
and labeled with the person’s name. The color of the shadow of a node illustrates
the domain (i.e., business unit) to which the actor belongs. The default shape is
a hexagon and the border color is always black (see Fig. 13.4a). The size of an
actor node is proportional to the number of incoming and outgoing communication
paths. The bigger the node is the more this actor has communicated with other team
members. The owner of a source file is illustrated by shaping the node as diamond
(see Fig. 13.4b).

A node label with a frame indicates that the developer took over the ownership
of a source file in the corresponding work package. The change of the ownership
comes along with an alien commit that is represented by drawing the actor name in
bold face (see Fig. 13.4c).

Erich Gamma Dj Houghton John Arthorne

(a) Project member (b) Owner (c) Owner change

Fig. 13.4 Shapes and graphical features to represent actors in the STNA-Cockpit graph

13.4.2 Work Packages

A work package is illustrated by a gray rectangle. The default color of the border
is light gray and the default color of the shadow is also light gray (see Fig. 13.5a).
The border color indicates the number of bug reports that have been associated with
committed revisions (i.e., the number of commits that contained a bug report number
in the commit message). The color gradient is from light to dark gray. The darker
the color the fewer commits referenced bug reports (see Fig. 13.5b). In addition,
the shadow of a node indicates the total number of problems reported for the work
package. The color gradient ranges also from light to dark gray, whereas dark gray
indicates a work package that has been affected by many problems. Similar to actor

(a) Work package (b) Commit-problem links

org.eclipse.core.runtime.compatibility org.eclipse.core.runtime

Fig. 13.5 Shapes and graphical features to represent work packages in the STNA-Cockpit graph
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nodes, changes in the ownership of source files are indicated by drawing the label
of the affected work package in bold face.

13.4.3 Communication and Collaboration

Ties (i.e., edges) in the graph either represent an interaction that occurs or is valid
within the selected observation period. Possible interactions are: sending an email
to a mailing list, opening a bug report, commenting on a bug report, committing
source code changes to the versioning repository, and owning source code.

The communication between actors is colored gray. The width of an edge indi-
cates the amount of communication between the associated actors (see Fig. 13.6a).
A commit of source code changes to the versioning repository is indicated by a gray
edge between the developer and the work package the modified source file belongs
to (see Fig. 13.6b). Also for these edges, the width indicates the number of commits.
In case of an alien commit, the font of the two node labels denoting the developer
and affected work package are changed to bold face as described above. The own-
ership of source files contained by work packages is represented by a black edge
between owners and work packages.

(b) Developer contribution

Oleg Besedin

Rafael Chaves

Pascal Rapiault

(a) Email and bug communication

Dirk Baeumer

org.eclipse. re. ressionsco exp

Fig. 13.6 Shapes and graphical features to represent communication and collaboration in the
STNA-Cockpit graph

Applying these patterns to the network graph of Fig. 13.3 we can see that
most of the communication has been between John Arthorne, Dj Houghton,
and Rafael Chaves. The represented communication was on bug reports solely.
During the selected observation period these three authors committed changes
to source files contained by the two packages org.eclipse.core.resources and
org.eclipse.core.runtime. Dj Houghton owns source files in these packages while
John Arthorne and Rafael Chaves performed alien commits.

13.5 Communication and Collaboration in the Eclipse Project

In this section we demonstrate STNA-Cockpit by applying it to the Eclipse Platform
Core project data. In particular, we demonstrate how STNA-Cockpit can be used to
answer the following questions:
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• Who owns or is working on which source code package?
• Who are the key personalities in the Eclipse Platform Core project?
• Can we identify shortcomings in the communication and collaboration structure

in the project, meaning alien commits?

We use the Eclipse Platform Core project as an example to illustrate the benefits
of our integrated data model and the STNA-Cockpit approach. Analysis results are
interpreted in the context of this project and should not be generalized. The follow-
ing section briefly outlines the Eclipse Platform Core project and the data sources
we used in the case study.

13.5.1 The Eclipse Platform Core Project

Eclipse.org is an open source community whose projects are focused on building
an integrated and extensible development platform. The Eclipse Project is the top-
level project dedicated to providing a robust, full-featured, commercial-quality, and
freely available platform for the development of integrated tools. In this case study,
we focus on the Eclipse Platform Core component that is a main component of the
Eclipse Platform project. In January 2007, the Eclipse Platform project comprised
18 mailing lists, 34 different classified Bugzilla components and more than 350
plug-ins. To know which part of the source code is affected by a discussion within
an email or bug report the different data sources had to be mapped. Table 13.1 shows
the set of the plug-ins, mailing lists, and Bugzilla components that concern Eclipse
Platform Core. The mapping was obtained from the Eclipse Platform Core project
website.3

In total the source code of Eclipse Platform Core component consists of 17 plug-
ins. Communication between the developers of the component takes place in the
mailing list platform-core-dev. In Bugzilla, two components were used to report
problems and enter change requests for the Eclipse Platform Core project. In a first

Table 13.1 Plug-in sources, mailing list, and Bugzilla components of the Eclipse Platform Core
project

Name Plug-ins Mailing list Bugzilla

Platform.Core org.eclipse.core.contenttype platform-core-dev Platform.Runtime
org.eclipse.core.expressions Platform.Resources
org.eclipse.core.filesystem.∗
org.eclipse.core.jobs
org.eclipse.core.resources.∗
org.eclipse.core.runtime.∗
org.eclipse.core.variables

3 http://www.eclipse.org/eclipse/platform-core/
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step, we retrieved the CVS, Bugzilla, and mailing list data of mentioned data sources
up to November 2006. From CVS we retrieved 7,479 change log entries from 997
source files. 7,907 bug reports have been imported from Bugzilla and 102 emails
were retrieved from the platform-core-dev mailing list.

After importing the data, the Evolizer database contained 2,581 persons, 101
email and 11,081 Bugzilla communication paths. 2,536 person entities were
imported from the Bugzilla data, 132 are mailing list users of which 73 have been
matched to Bugzilla users. Contributions to the source code were from 27 devel-
opers. All of them have been mapped to Bugzilla users. Because we were mainly
interested in the communication and collaboration of Eclipse developers, we con-
centrated our analysis on the 27 developers. While all these developers participated
in Bugzilla reporting; only 14 of them wrote emails to the mailing list.

In the following we show a number of applications of STNA-Cockpit and the
benefits of our integrated data model and visualization approach.

13.5.2 Ownership and Alien Commits

Assume a scenario in which a project manager wants to find out that owns or is
working on which plug-in of the Eclipse Platform Core project, and whether there
have been violations in the developer contribution structure. For this, the project
manager selects the observation period and has STNA-Cockpit draw the collabo-
ration graph that represents only the CVS information. We did this for the Eclipse
Platform Core project for the time period from 14th to 28th February 2005 and
obtained the collaboration graph depicted in Fig. 13.7.

The black edges in the graph denote the ownership of source files at that time.
For example, the graph shows that Jeff Mcaffer, Pascal Rapicault, and Dj Houghton
are the owners of source files of the org.eclipse.core.runtime.compatibility plug-
in. In general, the graph shows several owners of source files per plug-in. Most
interesting, however, is that John Arthorne contributed to this plug-ins, though; he
is not an owner of source files of any of this plug-ins. All his contributions were so
called alien commits that are indicated by the bold labels of the nodes representing
John Arthorne and the modified plug-ins. The dark gray border of work packages
further indicates that almost zero of the commits reference a Bugzilla bug report.
Moreover, the shadows of two rectangles are painted in dark gray indicating that
the two corresponding plug-ins were affected by a high number of problems. In
summary, such a view provides the project manager with an overview about the
commit and bug reporting activities within the selected observation period. Alien
commits might indicate shortcomings in the code or team organization, depending
on whether or not strict code ownership has been followed in a project.

13.5.3 Communicators

STNA-Cockpit can aid project managers in identifying the key personalities in
her project. The communicator is such a key personality who knows where the



www.manaraa.com

13 Dynamic Analysis of Communication and Collaboration 279

Fig. 13.7 Collaboration in the Eclipse Platform Core project observed in the time from 14th to
28th February 2005

information ideally gets processed. Figure 13.8 illustrates the communication via
the developer mailing list and Bugzilla data over 21 months. The amount of com-
munication (i.e., the number of communication paths reconstructed from bug reports
and emails) is illustrated by the width of edges. The wider the edges of a person’s
node are, the more this person communicated with other developers.

The graph in Fig. 13.8 shows the core development team whose members fre-
quently communicate with each other. Rafael Chaves, Dj Houghton, Jeff Mcaffer
Thomas Watson, John Arthorne, and Pascal Rapicault form the core team. They are
the communicators who keep the network together and play an important role within
the project. Interesting is that they all belong to either the group @ca.ibm.com or
@us.ibm.com as indicated by the shadows of rectangles representing these devel-
opers. Another highly connected group is formed by the Swiss team (@ch.ibm.ch)
whose members are represented by the nodes on the right side of the graph. Almost
each developer of the Swiss team is in touch with the US team; however, Markus
Keller and Daniel Megert turn out as the main communicators between the two
teams during that time.

Another interesting finding concerns the environment via which the developers
communicated. Most of the communication was via Bugzilla bug reports indicated
by the gray edges. Only the core team also used the mailing list to discuss Eclipse
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Fig. 13.8 Communicators of the Eclipse Platform Core project as from May 2004 to February
2006

Platform Core relevant issues. Such findings are of particular interest when new
ways of communication are considered.

13.5.4 Project Dynamics

Newcomers should be integrated fast into development teams to rapidly increase
productivity and foster synergy among team members. With STNA-Cockpit the
project manager can observe how newcomers actually are integrated into their
teams. For this, the project manager selects the starting observation period and
uses the time-navigation facility of STNA-Cockpit to investigate the evolution of
the communication and collaboration network over time. The graph animation
allows the project manager to observe how the newcomer behaves concerning
communication and collaboration with other team members. In particular, she
looks for communication paths that tell her the newcomer gets actively involved
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(b) 2nd half of April 2004(a) 1st half of April 2004
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Fig. 13.9 Socialization of Kevin Barness in the Eclipse Platform Core project

in discussions on the developers mailing lists and bug reports. In addition, she
observes whether the newcomer contributes to the plug-ins and finally takes over
responsibility of portions of the source code.

Consider the following scenario in which Kevin Barness is entering the US
team @ca.ibm.com of the Eclipse Platform Core project in April 2004. Figure 13.9
depicts various snapshots taken from the network created for subsequent points in
time. Kevin Barness is starting as a developer in the Eclipse Platform Core team at
the beginning of April 2004. His first action is to get in touch with some key person-
alities of the project, namely Rafael Chaves and John Arthorne. His first contacts are
visualized by the graphs depicted by (Fig. 13.9a, b). In the following weeks he com-
municates also with other project members to get more involved into the project (see
Fig. 13.9c), namely Darin Wright and Darin Swanson. As (Fig. 13.9d) illustrates,
Darin Wright is a developer and Darin Swanson the owner of the files that are going
to be modified by Kevin. Rafael Chaves seems to play the role of the connector who
introduces the new developer Kevin Barness to the responsible persons. According
to the graph, he is communicating with two senior developers.
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Another example of project dynamics concerns members leaving the project.
This is particularly interesting for OSS projects in which there exists no official
commitment or contract between members and the OSS project. In general, mem-
bers are free to join and leave an OSS project. STNA-Cockpit can be used to early
recognize such situations by observing the developer’s contributions to mailing list
forums, bug report discussions, and source code. Knowing such changes in advance
helps the project leaders to take proper actions, such as, to find active members to
take over the work of the leaving person.

13.5.5 Summary

We demonstrated the application of STNA-Cockpit to analyze the communica-
tion and collaboration structure of the Eclipse Platform Core project. Concerning
collaboration we showed how the tool can be used to find out which developers
have worked on which plug-ins during a selected observation period. Violations,
in particular, alien commits to plug-ins, were highlighted. The visualization of the
communication structure allows the project manager to observe the roles of develop-
ers in her project. For example, in the Eclipse Platform Core project, we identified
the communicators that represent the developers most active on mailing lists and
Bugzilla. They represent the right information source to obtain status reports and
also to get newcomers involved into the project. The sliding time window approach
of STNA-Cockpit was used to find out about project dynamics. For example, we
found newcomers joining the Eclipse Platform Core project, as well as, developers
leaving the project. These findings underline the value of our integrated communi-
cation and collaboration data model and visualization techniques as implemented
by STNA-Cockpit.

13.6 Conclusions and Future Work

Software repositories, such as versioning, bug reporting, and developer mailing lists
contain valuable data for analyzing the communication and collaboration structure
of software projects. We presented a meta-model to represent communication and
collaboration in OSS project and showed how an instance of such a model can
be obtained from CVS, Bugzilla, and mailing list data. We also introduced our
STNA-Cockpit tool to interactively explore the integrated model by means of graph
visualizations. With this tool the user can observe project dynamics in a software
project at any point in time and over time using the data provided by Evolizer.

Getting awareness of communication and collaboration in a project can be very
valuable for the project manager: (1) understanding how newcomers can be inte-
grated fast and efficient; (2) knowing the key contributors and communicators in
the different teams; and (3) being able to replace or add expertise holders in project
phases and in software parts. Of course all this requires the data to be available in a
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processable form but the key issue for that is the identity management. As long as
email and Bugzilla identities can be matched to people such an analysis can work
mostly automated. Such mapping data for identities should be easy to keep up-to-
date and then can be fed into tools, such as, STNA-Cockpit that then can compute
the communication and collaboration network of a project automatically. The time-
window browsing further allows one to zoom into particular phases of the project
and learn about collaboration patterns of developers.

Still, there are limitations of the current approach that are due two facts. First,
in many OSS projects such identity mapping data does not exist and has to be
reconstructed with quite some manual effort. Second, the analysis of collabora-
tion patterns is not yet reflected on software releases, features or software phases,
such as, testing or refactoring. But from our analysis we have seen a great potential
of investigating communication and collaboration data for project steering ranging
from the role of a developer to the role of a project manager.
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Chapter 14
A Comparison of Commonly Used Processes
for Multi-Site Software Development

Alberto Avritzer and Daniel J. Paulish

Abstract This chapter describes some commonly used multi-site software devel-
opment processes and compares them with respect to the amount of coordination
that they support across locations. Specifically, two common processes, called the
“Extended Workbench Model” and “System of Systems Model” will be compared
based on our experience. The processes have each been experimentally applied over
several years to a global development project, called the “Global Studio Project”
(GSP) in which university students around the world have simulated the pro-
cesses used for an industrial multi-site development project. Lessons learned will
be discussed and guidance given for multi-site development projects based on our
experience from experimental and real projects.

14.1 Motivation

For the past few years, Siemens has been experimenting with software development
processes and practices for globally distributed projects using student-based devel-
opment teams located at different universities around the world. The students who
make up the Global Studio Project (GSP) simulate an industrial software devel-
opment project using common practices for collaboration among distributed sites.
Experiences with this project have been reported in a number of papers [2] and it
has been documented as a case study (GSP 2005) within [21].

The motivation for studying multi-site software development processes is driven
by the business needs. A number of questions were raised, and they are still being
investigated.

A. Avritzer (B)
Siemens Corporate Research, Inc., Princeton, NJ 08540, USA
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285I. Mistrík et al. (eds.), Collaborative Software Engineering,
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• What can we do better to get products faster to the global market?
• Which software engineering technologies & processes can we apply? e.g.,

Requirements Engineering, Requirements Patterns, Domain Modeling, Business
Object Modeling, Model Analysis Tools, Product Line Engineering, Software
Architecture.

• What software management techniques can we apply? e.g., Global Development,
Agile Team Processes, Rapid Application Development.

• How do we integrate products acquired from multiple divisions distributed
around the world with local market requirements?

• How can we best utilize the globally distributed workforce by exploiting
diversity, local creativity, and domain expertise?

• How can we reduce overall development costs by exploiting local labor rates?

Communication and cultural differences have been reported as the most common
non-technical barriers that are usually encountered in global software development
projects [6, 11]. The selection of a global software development process methodol-
ogy for the development and testing of a software project introduces new challenges
to project management. Project managers of global software development projects
must address issues related to several time zones, large geographical distances, con-
flicts generated by lack of cultural sensitivity among team members, lack of frequent
communications, and the resulting lack of trust among members of remote teams
[8, 15].

In [7], Damian et al. raise the issue of the more formal nature of the commu-
nications among remote team members, as contrasted to the more informal nature
of communications within a collocated team. It’s more likely that strong personal
relationships will form within a collocated team leading to more opportunities
for communication among team members for the informal exchange of informa-
tion related to the project. Therefore, collocated projects benefit from the informal
exchange of information, while globally distributed software development projects
are more likely to encounter communications challenges.

In [20], Sa and Maslova introduced a unified framework that was designed to
enable physically separated teams engaged in a global software development project
to define their own software development processes using several notations. The
objective of the proposed framework is to create a unique process representation for
the project to facilitate communication and synchronization among the teams.

In [3], Braun described a set of categories that were used to categorize projects
that are likely to perform well in a global software development environment. The
proposed classification was used to suggest an off-shoring process to enable a phys-
ically separated workforce to work seamlessly in an industrial environment. The
proposed process for global work attempts to integrate physically separated teams
by taking advantage of locally available skills, individual team structures, and team
communication.

In [4], Carmel and Agarwal discuss the impact of geographical distances on
coordination and control of global software development projects. In [13], and [14],
Herbsleb et al. recommend that remote software development teams have frequent
face-to-face meetings to increase the levels of communications. Furthermore, it was
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recommended that team members should be able to identify and contact the cor-
rect person to address questions and issues. In [15], Layman reports that several
global software development challenges could be overcome by increased informal
communication among the remote team members.

For many years, software project organizations have often been structured in
accordance with the system architecture design of the product being developed
[1, 2]. For globally distributed software development projects, coordination and
communication among the development teams are more complex than for collo-
cated projects due to time, distance, and cultural differences. For multi-site software
development projects, it is especially important to minimize the need for communi-
cation between teams that are not collocated and to maximize the communication
within a local team. In general, more loosely coupled architectures with well defined
interfaces for which components are distributed across development sites are more
amenable to reduce communications between the remote teams.

In [23], Setamanit et al. present a discrete-event simulation model that is designed
to help project managers assess global software distributed processes. The discrete-
event simulation model was applied to a simple example project to model several
project phases. The paper evaluates the impact of several global software devel-
opment dimensions on project performance, defined as effort, duration, and latent
defects.

In [5], Cusumano et al. present an analysis of global software development prac-
tices that was based on a survey of 104 projects. Most of the projects were custom
or semi-custom software development projects with medium reliability require-
ments to be deployed at business workstations. It was observed that conventional
water-fall software development processes were very popular in India, Japan and
Europe, while the use of formal specifications was less common in the US.

In [9], Ebert and De Neve provide detailed recommendations for successful
global software development projects that are based on the authors’ analysis of
Alcatel’s switching and routing division’s global software development experiences.
They recommend splitting the work according to feature content and building col-
located teams to work on specific features. This approach is called coherent and
collocated teams of fully allocated engineers; i.e., engineers that are not distracted
by other tasks. They recommend that all development locations working on a spe-
cific product line shall use the same processes, methodologies, and terminology.
They conclude that managing global software development is not easy and entails
several risks to the projects involved. However, they observed as an important ben-
efit of global software development projects the increased level of innovation that is
created by engineers with very different cultural backgrounds.

In [16] Nguyen et al. present an empirical study aimed at showing that the
introduction of new collaborative environments has greatly diminished the impact
of physical distribution on task delay and task resolution times. Wikis and social
networking sites provide the ability to asynchronously track and comment on work
items by teams that are physically separated.

In [12] Herbsleb and Moitra outlined several of the impacts that physical sep-
aration can have on global software development projects: strategic issues related
to work assignment to different sites, cultural issues related to the close interaction
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of team members from several backgrounds, inadequate communication related to
physical separation of team members, knowledge management of project assets, and
process issues. Specifically, the authors have identified the criticality of synchro-
nizing process steps among physically separated teams and have pointed out that
concurrent software development in global projects is extremely difficult because
of requirements volatility and the lack of informal communications. In the “sys-
tem of systems” process introduced in this chapter, we describe our experience
with concurrent development in a global software development project and the use
of domain experts that are physically separated to overcome the difficulties intro-
duced by requirements volatility and the lack of informal communications among
the physically separated teams.

14.2 Comparison of Different Business Processes for Global
Software Development

In [18] Prikladnicki et al. report on an empirical case study of distributed software
development processes in five large industrial companies. Data for the case study
was obtained by interviews of managers and technical leaders in these companies
and document reviews. The companies reported on three main types of software
processes used for global software development projects:

1. Lightweight processes defined by eliminating some steps from standard pro-
cesses.

2. Standard well documented processes.
3. Heavyweight processes defined by adding additional requirements to the stan-

dard processes.

The authors report on several dimensions for analysis of the distributed software
development processes used by these five companies. The authors proceed to sim-
plify the control dimensions into build or buy, and the geographic dimensions into
onshore and offshore. The companies reported several challenges in applying these
distributed software development processes. In the following, we describe the most
common challenges encountered in this case study, for the four combinations of
distributed software development processes:

• Onshore-Buy process – The definition of a common software development pro-
cess, including coding standards, configuration management and knowledge
management between the central site and the vendor companies was a very
difficult challenge for these companies.

• Onshore-Build process – The outsourcing of work to a supplier within close
geographical distance that worked for the same company created informality in
change requests that impacted the software quality and tracking of defects. This
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company identified as a difficulty the definition of a formal software development
process.

• Offshore-Buy process – The main problem identified by this company was the
lack of a common software development process between the central site and
the vendor. For example, in the requirements engineering phase a common pro-
cess for requirements elicitation was not in place. Problems were identified
in the requirements engineering phase that were later diagnosed as related to
miscommunication or lack of requirements documentation.

• Offshore-Build process – The difficulties found by this company were related to
cultural and language differences and the lack of trust between the central site and
the remote sites as the remote sites were asked to integrate into the architecture,
coding standards, and processes defined by the central site.

14.3 Example Processes

Processes for multi-site software development are optimized for the communica-
tions patterns among the software engineers working at different physical locations.
Team members working at multiple locations often must overcome communica-
tions and intercultural barriers caused by time zones and distance as compared to
engineers working in a collocated project. Multi-site development projects are often
larger than collocated projects; thus, processes used at one site will often have diffi-
culty scaling up for large distributed teams. Furthermore, development processes are
usually not easily portable due to differing working habits, conditions, and culture
such that what works well in Boston may not work so well in Bangalore.

Processes for multi-site software development are often based on an approach
where requirements and designs are decomposed such that components can be
developed by a collection of small teams working at different locations. Thus, the
system architecture is a key factor for the success of the multi-site development
project. For such projects, loosely coupled architectures are more amenable for split-
ting up the development work to be done across the multiple sites. Sub-processes
for requirements engineering, design, testing, quality assurance, and project man-
agement must be modified for multi-site work. For example, the use of requirements
models described in UML are often better than text-based specifications for multi-
site projects, since the software engineers at some of the sites may not have adequate
reading comprehension skills for specifications that are not written in their native
language.

Software project managers can use many processes and organizational struc-
tures for developing software products across multiple development sites. Some
of the project approaches that could be considered include organizing by: product
structure, process steps, release, competence center, and open source. In a product
structure organizational approach, the requirements engineers and architects allo-
cate features to components and the components are allocated as work packages to
the different sites. In a process steps structure, work is allocated across the sites in
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accordance with the phases of the software development process; e.g., requirements
engineering may be done at one site, development at another site(s), and testing at
yet another site. In a release based organization approach, the first product release is
developed at one site, the second at another site, etc. Often, the releases will be over-
lapped to meet time-to-market goals; e.g., one site is testing the next release, another
site is developing a later release, and yet another site is defining the requirements for
an even later release. In a platform structure, one site may be developing reusable
core assets of the product line and other sites may be developing application-level
software that uses the platform. In a competence center organizational approach,
project work is allocated to sites depending on the technical or domain expertise
located at that site. For example, perhaps all user interface design is done at a site
where usability engineering experts are located with experience designing similar
products. In an open source structure, many independent contributors develop the
software product in accordance with a technical integration strategy. Centralized
control is minimal except when an independent contributor integrates his code
into the product line. These organizational approaches may change over time. For
example, components may be allocated at first with the intent that the remote site
will develop the skills over time to become a competence center in the functionality
that component provides [8].

We will illustrate two example processes that were used on the Global Studio
Project (GSP). During the first two years of the GSP, a product structure approach
was used to organize the project and an “extended workbench model” development
process was used [21]. This resulted in a hub and spoke organizational struc-
ture (Fig. 14.1) in which the remote component development teams communicated
mostly with the central team roles (e.g., chief requirements engineer, chief architect,
project manager) at the headquarters or central site.

This hub and spoke organization is typically used when a central organization
is utilizing remote development sites for the first time. It often will take a year or
more to be able to develop the domain expertise, RE, and development skills in
the staff in the remote teams [21]. Thus, the central team transfers some of their
know-how to the remote teams over time such that they are able to take on a bigger

Fig. 14.1 Example extended
workbench model multi-site
software development
organization
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role in the development project. We recommend to organizations starting distributed
development for the first time to take a long-term view, since there will be a sub-
stantial learning curve time necessary for the remote teams to become productive
contributors to the development project.

During the third and fourth years (versions 3.0-4.0) of the Global Studio Project,
a “system of systems” process was used for distributed development [2]. With this
approach, the software development process is still defined and managed centrally,
but the architecture and requirements engineering teams are extended with key
domain experts who are resident at the remote sites. The specialized domain knowl-
edge drives the overall requirements and software architecture specification efforts
as early phase activities. Frequent communication between the central and remote
teams and among the remote teams is encouraged. Unlike the extended workbench
model approach, the central team is not required to co-ordinate the communications
among the distributed teams.

Figure 14.2 compares the extended workbench model with the system of sys-
tems model, with respect to the technical skills and domain knowledge needed. In
practice, central organizations working with a remote development site for the first
time will likely apply the extended workbench model and then migrate to the sys-
tem of systems model as the domain and technical expertise of the remote site team
members increases. It should be noted that a continuum of processes could be used
depending on the organizational, product, and project needs. The extended work-
bench and system of systems process models are quite different, and any specific
project will require process tailoring to define its unique process.

The motivation for comparing these different processes was twofold. We learned
that the extended workbench model required significant upfront work by the central
team before the remote teams could be productively engaged. This upfront work by
the central team consisted of early phase tasks such as requirements specifications
and architecture definition, and they took several staff months to complete.

In addition, for GSP version 3.0, the central team staff size was significantly
reduced as compared to GSP version 2.0. Therefore, we realized that we needed a
fully distributed development process, where remote teams could hit the ground
running and not have to wait for the central team requirements specification
effort. We also realized that if we defined a common interface for component

Fig. 14.2 Extended
workbench vs. system of
systems process models
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integration, we could get the development teams started immediately with their code
development activities.

Although the team size for the GSP (version 3.0-4.0) was smaller than that for
(version 1.0-2.0), we strongly suspect that the system of systems model will work
better for very large projects than the extended workbench model. This is because
for larger projects the key roles at the central site tend to get overloaded with com-
munications from the remote sites (see Fig. 14.1). Therefore, in a system of systems
model, domain experts for each individual system are identified upfront, such that
they are reachable by the local team members for addressing questions. Thus a
project with more distributed expertise should be able to better scale upward.

We have suggested that the maximum size for a project using the extended work-
bench model is approximately 15 M lines of C++ code (LOCs) [21]. This is based
on rules-of-thumb where a maximum of 150 components are defined in the system
architecture and each component is less than 100 K LOCs.

14.3.1 Extended Workbench Model

Figure 14.3 gives an example organization showing the relationship between the
central and remote teams for the extended workbench model. The product manager
has the overall responsibility for the life cycle of product development. The chief
requirements engineer and chief architect have major responsibility for technical
decisions affecting the product’s functionality and performance. The members of
the remote component development teams report to a local R&D resource manager
at their site. The remote teams report to the project manager at the central location,
primarily through their assigned supplier manager, who serves as a bridge between
the sites.

Figure 14.4 provides a process description for the extended workbench model.

Fig. 14.3 Relationship between central and remote teams
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Fig. 14.4 Example extended workbench process model
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The key practices of the extended workbench model as applied on the first two
years of the Global Studio Project are:

• Centralized Management – The software process was managed centrally. System
requirements, architecture, and system testing were performed centrally.

• Iterative Development – An iterative and incremental software development
approach was used with short two week iteration cycles.

• Minimization of Cross Team Communication – The central team managed
all communications between teams. Most of the project communications were
between the remote teams and the central team.

• Formality of Requirement Specifications – The central team clarified require-
ments by providing a formal requirements specification to the remote teams.

14.3.2 System of Systems Model

The GSP (version 3.0-4.0) project team is organized as a central co-ordinating team,
a distributed requirements engineering/architecture team, several remote develop-
ment teams, and a remote integration testing team. The central coordinating team
is responsible for product identification and assignment of components to the dis-
tributed development teams. An example process description summary for the
system of systems model is given in Fig. 14.5.

For GSP (versions 3.0-4.0), more of an open source approach was used as com-
pared to GSP (versions 1.0-2.0), with competence centers located at the remote sites.
The system of systems approach worked well for a project of the size of the GSP and
with staff from similar cultures. The extended workbench model with its hub and
spoke organization is difficult to scale for very large projects, since as the project
gets larger the central team engineers in key roles can often become overloaded with
communications from the remote teams. As the central team chief engineers must
answer all functionality, design, and performance questions from the remote devel-
opment teams, they can quickly be viewed as communication bottlenecks. Thus,
distributing requirements and architecture expertise to the remote sites seems to help
optimize communications for very large projects. However, for many early phase
tasks such as definition, review, and analysis, collocated teams perform best. In the
real world, the lack of collocation is compensated for by bringing the distributed
architects together periodically for design workshops and reviews and encouraging
personal networking among them to build a “virtual architecture team”.

For the third and fourth years of the Global Studio Project the following key
practices were used for the system of systems process model.

• Hybrid centralized/distributed management – The software process is still devel-
oped and managed centrally. However, an architecture/requirements team com-
posed of members of the central team and key members of the remote teams
is formed. The objective is to use domain knowledge about the large exist-
ing software components to help steer the overall requirements and system
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Fig. 14.5 Example system of systems process model



www.manaraa.com

296 A. Avritzer and D.J. Paulish

architecture specification effort. Software integration testing is performed by a
remote team.

• Iterative Development – Development and testing is conducted in two week
cycles following the same iterative methodology used for GSP (versions 1.0-2.0).

• Encouragement of Communication between Remote Development and the
Integration Testing Team – Communication between the development teams
and the remote integration testing team is encouraged. The central team is
not required to moderate the communications between the remote develop-
ment teams and the integration testing team. However, the central team could
become involved in the communication between remote teams to ensure product
development and testing is progressing as planned.

• Formal Testing Specifications – Testing specifications are formal, provided by
the remote integration testing team to the development teams on two-week cycle
iterations.

• Less Formal Requirements Specifications – The common interface between com-
ponents and the availability of domain experts on the existing components lessens
the need for formal requirements specifications.

The system of systems process starts with the central team forming the key teams
and identifying the components to be developed as follows:

• The central team forms the architecture/requirements team to define the common
interface for component integration.

• The central team identifies the components to be integrated over this common
interface,

• The central team identifies one key domain expert for each identified component,
• The central team identifies a remote software development team for each

identified component,
• The central team identifies a remote software testing team to perform product

integration testing.

Thus, the project team is organized into a central coordinating team, a dis-
tributed architecture/requirements team, several remote development teams, and one
remote integration testing team. The remote teams are globally distributed. The cen-
tral coordinating team is responsible for product identification and assignment of
components for distributed development. As the components being integrated are
full-fledged operating components, the test cases/use cases can be developed by
inspecting the existing component’s user interface [1].

14.4 Example Project – Global Studio Project

In 2004, Siemens Corporate Research (SCR) initiated an experimental software
engineering project called the Global Studio Project (GSP) which was set up using
university student teams in 6 universities across 4 continents (see Fig. 14.6) [21].
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Fig. 14.6 Global studio project

The student teams simulated an industrial distributed software development project
in order to help increase the understanding of practices that could be used to
successfully execute global projects and avoid some of the pitfalls of such projects.
Although Siemens had much experience with globally distributed software devel-
opment, both good and bad, the lessons learned working with student teams were
insightful.

Development teams were set up at 6 universities with about 30 developers within
5 countries in 4 continents spread across 11 time zones. The students implemented
a “light” version of a Siemens software product, and they developed and delivered
67.5 KLOCs of operational product and test code in two years.

In the first two years of the project, the students used the extended work-
bench model and developed a building management station. In the third and fourth
year of the project, the students used the system of systems model and devel-
oped a performance engineering tools set. In addition to providing the research
team with experimental project data, the students generally believed that work-
ing on a simulated industrial project was beneficial to their software engineering
education [19].

The Global Studio Project created an experimental distributed software engineer-
ing project where students were used to simulate the roles described in the multi-site
development processes used. Thus, there was a lack of the business risk normally
associated with an industrial software development project. The advantage was that
researchers could observe the best and not so good practices of the development
team as they attempted to develop a product with staff spread out across multi-
ple countries and continents. In most cases, the distributed team members didn’t
know each other and communicated with each other without face-to-face meetings.
The communications among the team members were monitored by applying social
network analysis (SNA) surveys.
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Fig. 14.7 Social network analysis

Social network analysis [22] has been useful for measuring and understanding
the communications patterns among team members in the Global Studio Project. As
illustrated in (Fig. 14.7), the nodes represent team members and the lines represent
the communications between them. Note that the three teams at the bottom of
(Fig. 14.7) communicate only among their own team members and with the cen-
tral team, while the top four teams communicate with each other. For this project,
the top four teams were collaborating on a subsystem development and they were at
two locations within the same time zone. The bottom three teams were working on
components that were loosely coupled from each other. Misalignment between the
SNA diagram and the system architecture module diagram may indicate that project
problems may be developing; for example, the system architecture is changing or
inefficient or costly communications are negatively impacting productivity.

14.5 Lessons Learned

Some of the lessons learned during the Global Studio Project are summarized below.
Communications: Distributed projects typically have more complex communi-

cation and coordination problems than collocated projects, since much informal
communication is lost (e.g., water cooler talk) due to distance and time zones.
The GSP compensated for this lack of informal communications using collabora-
tion tools such as wikis and videoconferencing and with more formal specifications,
but what was surprising to the researchers observing the project was the very large
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amount of communications necessary to execute the project. Software develop-
ment is still largely a social activity, and the social network analysis surveys done
during the GSP showed high degrees of communication interaction across the team
members.

Team Size: Agile development processes were encouraged for the GSP, but
today’s methods work best for smaller teams. Thus, the GSP became a collection
of small teams. During the course of development iteration, a 4-person student team
at one university usually learned to work well together, but they also needed to
interface with other teams made up of students whom they never met. Keeping
the individual team sizes small was achieved with the architecture design where
smaller components were allocated as work packages to remote teams with standard
interfaces that were centrally defined.

Cultural Differences: The students in different countries had different working
habits. Some of these were imposed by the university (e.g., part-time or full-time,
holidays, vacations), but some habits appeared to be culturally driven. Basic charac-
teristics such as timeliness, directness, friendliness, meeting processes, attention to
details were diverse enough that students were often “surprised” by the behaviors of
students in remote teams. Ultimately, members of remote teams must “trust” each
other to be able to confidently execute the project. We observed that the cultural dif-
ferences contributed to the relatively long start-up times for new teams to become
productive as well as the learning curves for the application domain and common
development tools.

Project Management: The factors for success for project management are usu-
ally dependent on the teams, communication, and environment. For GSP (versions
3.0-4.0), the objective of team building activities was to build a high-performing
team with a feeling of partnership. The project was initiated by having one face-to-
face kickoff meeting, where the key team members were present. After three weeks,
a face-to-face architecture meeting was held at the central team’s site. The project
manager followed-up with a face-to-face meeting with one key team member that
could not be present at the kick-off meeting. In addition, the leader of Integration
Testing was resident at the central site for one month. The project used a shared doc-
ument and code repository, and had weekly telecoms to address issues. All project
members were invited to attend the weekly telecoms, and most telecoms were well
attended. We believe the high level of commitment observed throughout the project
was due to the strong personal relationships that were created by the team build-
ing activities. We observed an evolution of the communication patterns among team
members, depending on the actual phase the project. Initially, most of the commu-
nication was among co-located team members and among the members visiting the
central team. We concluded that the reason for this pattern of communication was
the lack of knowledge of the work and expertise located in the remote teams. As
the project gathered momentum we saw a shift in the pattern of communications
from site-based to task-based communications depending on need. Finally, as the
project reached the critical milestone for delivery we saw even greater communica-
tions based on need and less communications based on site. The project had several
micro-cultures of a few similar cultural domains, so cultural shock was not as it
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is usually found when team members are from very distinct cultures. In the few
instances that cultural problems did occur, it was quickly resolved through intensive
communication.

Architecture: A key feature of the system of systems process used for GSP
(versions 3.0-4.0) is that the architects were distributed at remote sites and com-
petence centers, each having different expertise and responsible for a different
component. This is different from previous the extended workbench model used
for GSP (versions 1.0-2.0), where all the architects were located at the central site.
We observed the benefit of having a focal architect within each remote site. When
the software architecture is well-modularized after the design rules are stabilized, a
team member can obtain all the information he/she needs to accomplish their task
within the local team, and does not need to send inquiries to members of another
remote team.

Viewing software architecture design as a decision making process, we hypoth-
esize that the dependency structure among design decisions implies the potential
needs for communication. Therefore, it is important to make the potential communi-
cation requirements between modules explicit early in the architecture development
process such that tasks could be assigned to global teams to maximize the project
communication efficiency. To achieve this purpose, we need an appropriate repre-
sentation of the modular structure of the design to reveal the potential needs for
communication among architects and developers.

14.6 Conclusions

Future software systems will clearly become larger and provide increased func-
tionality. We have assumed that the organizations required to develop these ultra-
large-scale software systems will necessarily become larger. For practical space and
staffing reasons, these future development organizations will likely be widely spread
across multiple sites, spanning nations, time zones, and continents. Distance, time,
language, and cultural differences will make communications among team members
more difficult.

Our ultra-large-scale software systems of the future will likely be developed by
strangers who may never have worked together before. Informal communications
among team members around the water cooler or in the company lunch room will
cease to exist. We envision that the agile processes trend will continue such that
individual component development teams will remain small and be part of a large
coordinated project; i.e., a team of teams. This will require new multi-site develop-
ment processes and organizational models that compensate for the loss of informal
communications and exploit the advantages of new system architectures, tools, and
technologies.

We conclude that global software development projects could be structured to
take advantage of domain expertise located in remote sites to create a more scalable
environment, as the central site experts would not be so overwhelmed by remote
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site requests. This additional scalability is achieved because our processes enable
the distribution of important tasks to remote sites.

14.7 Future Extensions to the System of Systems Global
Software Development Process

The introduction of global software development practices was motivated, ini-
tially, by the price differential of software engineering between North America
and Western Europe from India, China, and Eastern Europe [10]. However, the
recent successes of global software development initiatives in India, China and
Eastern Europe, and the relative increase in the proportion of science and engineer-
ing degrees awarded in Asia and Eastern Europe [17] seem to indicate that system of
systems global software development processes, where domain experts are located
at all the physically distributed sites will have increased acceptance in the future.

According to the National Science Foundation (NSF) [17] in 2004 about 4 mil-
lion students were awarded first degrees in Science and Engineering: 700,000 in
Asia, 1 Million in Western and Eastern Europe including Russia, and 600,000
in the US. Moreover, while about 5% of all US awarded bachelor degrees are
in Engineering, Asian countries award more than 50% of all first degrees in Science
and Engineering.

Therefore, we are currently involved with a new experimentation with a “sys-
tem of systems” software development process, where the objective is to have
access to domain experts that are physically distributed. We envision a process
where several project reviews are performed to elicit requirements and identify
areas where the project team lacks in-house domain expertise. These areas would
then be farmed-out to domain experts for detailed specification of system compo-
nents, algorithms, and methodologies for validation of correctness. These domain
experts would work closely with the developers at the development sites providing
leadership and guidance to the local developers.
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Part IV
Emerging Issues in Collaborative

Software Engineering

John Grundy

In recent years a number of new areas of software engineering practice have
emerged that bring new challenges to collaboration on large scale software projects.
These include, though are not limited to, the rise in open source software projects,
outsourcing of substantive parts of software projects, improving knowledge man-
agement and sharing in software development, and better identifying, capturing and
using rationale in software development projects.

Free and open source software projects have become a major player in research
and commercial software development [8]. However, open source software engi-
neering introduces a range of new challenges that “closed source” projects do not
normally have to contend with. This includes the need to co-ordinate work across a
diverse community of – usually voluntary and often unpaid contributors; the adop-
tion of a workable software process and collaboration tools to support the diverse,
highly distributed team; various collaboration support features ranging from ver-
sion control and repositories, to bug tracking and release management software [8].
Because of the complexity of relationships evident in open source projects – both
technical and social – a range of studies have been carried out in this domain. Most
analysis of various socio-technical relationships in free and open source software
projects aim to better understand how these work and can support collaboration in
this emerging domain [2]. Tools to support understanding and management of these
relationships have begun to be developed and deployed [4]. Open questions include
what sorts of collaboration affordances in free/open source projects will best support
different aspects of project work at different times between different team members
for different purposes.

Open source software is most commonly carried out by distributed teams and
individuals. This is one example of geographically distributed software develop-
ment. Another example is offshore development where an organisation carries
out parts of its software development in highly distributed geographic locations
[3]. Such projects introduce many challenges around communication, collabora-
tion and co-ordination. A further complication can come from outsourcing software
development to an offshore provider [9]. This introduces yet another challenge of
inter-company collaboration between software teams. A major area of project failure



www.manaraa.com

304 Part IV Emerging Issues in Collaborative Software Engineering

in this domain is the challenge of distance. Some aspects of a project may be suit-
able for offshore outsourcing while others not. Some teams and organisations may
be adept at providing offshore outsourcing but others not. How does management
determine which aspects of a project to offshore outsource? How do they deter-
mine suitable providers? Capability Maturity Models have been developed to assist
process improvement – can similar approaches assist with offshore outsourcing
capability assessment?

A key area of challenge in collaborative software development is the architecting
of a system. Of particular interest in recent times has been the desire to better cap-
ture knowledge about the architecture and the architecting process itself, in order
to improve communication, understanding and decision making [1]. To date while
much interest has been generated in this area, there are limited approaches and tools
to support collaborative architecting via knowledge sharing [6]. Key challenges
include how to manage the process; what knowledge to capture and how; how to
share the knowledge effectively; and evolution of the knowledge base as the soft-
ware evolves. Distributed software development compounds these challenges, for
example in the open source software domain where a highly distributed developer
base needs to understand the architecture of a complex system.

A new and emerging domain of software engineering is product line engineering
where a “product line” of software products is produced from a variable core [7].
A key challenge is in describing and managing the variability aspects of software
product lines [5]. Collaboration problems are introduced particularly in the domain
of requirements engineering for product lines. These are compounded even further
if a geographically distributed product line engineering project, such as in an off-
shore outsourcing project. One promising approach to addressing the challenges is
rationale management to better describe and manage variability.

Chapter 15 by Scacchi looks at the issue of “affordances” in open source and/or
free software development projects. These affordances include such issues as com-
munity dynamics, development process selection, collaborative work practices and
related socio-technical relationships. The focus is around what sorts of collaboration
affordances best assist collaborative work in this increasingly important domain of
software engineering. The work analyses a range of studies of open source soft-
ware projects and provides insights into collaboration practices and opportunities
for future research and practice.

Chapter 16 by Mäkiö et al looks at the issue of decision making around out-
sourcing of software development. More and more outsourcing projects are being
undertaken, many of which include an “off shore” component. Distance is a major
factor in the failure of outsourcing projects and the authors argue that risk mitiga-
tion should be undertaken early on such projects. To this end they have developed an
“Outsourcing Maturity Model” (OMM) to assist in the determination of suitability
and readiness for offshore outsourcing on complex software development projects.

Chapter 17 by Liang et al looks at knowledge sharing issues in the domain of col-
laborative software architecting. A key focus is supporting the use of architectural
knowledge when collaborating on software development. They present a two-part
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solution to this problem: a collaborative architecting process using architectural
knowledge as a key foundation, and a supporting tool.

Chapter 18 by Thurimella investigates the role of rationale in the emerging
domain of product line engineering, specifically around the requirements engi-
neering process. A range of collaboration problems present due to the separation
of domain and application engineering in this domain. The authors propose a
new methodology of issue-based variability management. This uses rationale
management to extend variability management in product line engineering.
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Chapter 15
Collaboration Practices and Affordances
in Free/Open Source Software Development

Walt Scacchi

Abstract This chapter examines collaborative work practices, development pro-
cesses, project and community dynamics, and other socio-technical relationships
in free and open source software development (FOSSD). It also describes what
kinds of collaboration affordances facilitate collaborative work in FOSSD projects.
It reviews a set of empirical studies of FOSSD that articulate different levels of anal-
ysis. Finally, there is discussion of limitations and constraints in understanding what
collaboration practices and affordances arise in FOSSD studies and how they work,
and then to emerging opportunities for future FOSSD studies.

15.1 Introduction

This chapter examines and compares collaborative work practices, processes, and
affordances that emerge in empirical studies of free/open source software develop-
ment (FOSSD) projects. FOSSD is a way for building, deploying, and sustaining
large software systems on a global basis, and differs in many interesting ways from
the principles and practices traditionally advocated for software engineering (SE)
[63]. Hundreds of FOSS systems are now in use by thousands to millions of end-
users, and some of these FOSS systems entail hundreds-of-thousands to millions of
lines of source code. So what’s going on here, and how are collaborative FOSSD
processes used to build and sustain these projects, and how might differences with
SE be employed to explain what’s going on with FOSSD?

One of the more significant features of FOSSD is the formation and enactment
of collaborative software development practices and processes performed by loosely
coordinated software developers and contributors. These people may volunteer their
time and skill to such effort, and may only work at their personal discretion rather
than as assigned and scheduled. Further, FOSS developers are generally expected
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(or prefer) to provide their own computing resources (e.g., laptop computers on the
go, or desktop computers at home), and bring their own software tools with them.

FOSS developers often work on global software projects that do not typically
have a corporate owner or management staff to organize, direct, monitor, and
improve the software development processes being put into practice on such projects
[cf. 29]. Does the absence or limited presence of corporate authorities or spon-
sors encourage or facilitate collaboration in FOSSD, or do collaborative practices
and affordances supporting FOSSD reduce the need to rely on traditional corpo-
rate authority or project management regimes? Is collaborative practice a defining
feature of FOSSD, is FOSSD a causal attribute of collaboration, or does collabo-
rative practice more readily produce FOSS? What motivates software developers
participate in FOSSD projects? Is volunteerism and personal discretion key to col-
laboration in FOSSD projects? Why and how are large FOSSD projects sustained
through collaborative practices and affordances? How are large FOSSD projects
coordinated, controlled or managed without a traditional project management team?
Why and how might answers to these questions change over time? These are the
kinds of questions addressed in this chapter.

15.1.1 What Is Free/Open Source Software Development?

FOSSD is mostly not about SE, at least not as SE is portrayed in modern SE
textbooks [cf. 63]. FOSSD is also not SE done poorly. It is instead a different
approach to the development of software systems where much of the development
activity is openly visible, and development artifacts are publicly available over the
Web. Furthermore, substantial FOSSD effort is directed at enabling and facilitating
collaboration among developers (and also end-users), but generally there is no tradi-
tional SE project management regime, budget or schedule. FOSSD is also oriented
towards the joint development of an ongoing community of developers and users
concomitant with the FOSS system of interest.

FOSS developers are typically end-users of the FOSS they develop [57, 58, 65,
69] and other end-users often participate in and contribute to FOSSD efforts as non-
developers. There is also widespread recognition that FOSSD projects can produce
high quality and sustainable software systems that can be used by thousands to
millions of end-users [44]. Thus, it is reasonable to assume that FOSSD processes
are not necessarily of the same type, kind, or form found in modern SE projects [63].
Subsequently, what is known about collaborative SE processes may not be equally
applicable to FOSSD practices without some explicit empirical justification. Thus,
it is appropriate to review what is known about FOSSD and where collaboration
practices and affordances emerge along the way.

15.1.2 What Are Affordances Supporting Collaborative Software
Development?

Affordances refer to situated, interactional properties between objects and actors
that facilitate certain kinds of social interactions in a complex environment. The
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concept of affordances appears in the studies that employ the construct to charac-
terize aspects of complex work settings that facilitate how people interact though
computing systems [1, 47]. Computer-supported work environments, when effec-
tive, afford new ways and means for collaborative learning [36]. Subsequently, the
focus in this chapter is on the interactions that facilitate collaborative activities
between FOSS developers who are geographically dispersed but share access to
online artifacts, networked information repositories and communication infrastruc-
tures, such as Web pages, Web sites, source code version servers, distributed file
servers, virtual private networks, and the like. Consider the example in Fig. 15.1, a
screenshot of an excerpt from the “Code of Conduct” that helps inform participants
and communicate social norms on how to “be collaborative” in the K Development
Environment (KDE) FOSS project.

This collaboration affordance includes a narrative inscription on a KDE project
Web page (an object in a complex online environment) that encourages and guides
project participants (actors – developers or users of KDE) for how to collaborate (via
certain kinds of social interaction) in the KDE project. Collaboration affordances in
FOSSD may emerge in online venues and workspaces for FOSSD work, and may
differ by the kind or type of FOSS being developed (e.g., operating system utility
program versus network computer game), the project web site or multi-project Web
portals in use, as well as by the infrastructure of online tools participants use in
FOSSD work.

What makes software development in general, or FOSSD in particular, col-
laborative? Is collaborative software development work natural and obvious, or
challenging, perplexing, and sometimes problematic? What can be done to facilitate
or encourage opportunities to make software development work more collaborative,
or even more fun and playful [cf. 46]? Do all multi-user software development tools,
interfaces, or repositories automatically enable collaboration, or are some more
effective than others? Questions like these help ground our interest in reviewing
what kinds of affordances are found in empirical studies of FOSSD work, and how
they facilitate collaborative software development activities with online software
artifacts.

15.1.3 Results from Recent Studies of FOSSD

The remainder of this chapter provides a review of empirical studies of FOSSD
that articulate different levels of analysis, and each level is examined in a separate
section. Emphasis is directed at identifying affordances that facilitate collaborative
software development activities found in different studies of FOSSD participants,
practices, and projects. Section 15.2 provides a brief background on what motivates
people to participate and contribution to FOSSD projects. Section 15.3 examines
the different resources and capabilities that FOSS developers bring to their projects.
Section 15.4 examines practices in co-operation, co-ordination, and control that
arise within self-organizing FOSSD projects. Section 15.5 examines how multiple
FOSSD projects give rise to alliances and inter-project network communities.
Section 15.6 examines how clusters of diverse projects form FOSS ecosystems that
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can exhibit collective patterns of sustained exponential growth. Finally, there is a
discussion of limitations and constraints in the FOSSD studies so far, followed by
conclusions that highlight emerging opportunities for future studies of collaborative
FOSSD work practices, development processes, information artifacts, and project
communities.

15.2 Individual Participation in FOSSD Projects

One of the most common questions about FOSSD projects to date is why will soft-
ware developers join and participate in such efforts, as well as engage in sometime
difficult and challenging technical work, often without pay, for sustained periods
of time. Surveys of FOSS developers [e.g., 23, 27, 28] have posed and investi-
gated such questions. There are complex motivations for why FOSS developers are
willing to allocate their time, skill, and effort by joining a FOSS project [28, 66].
Some FOSS developers are motivated to see their contribution of time, effort, and
code as gifts they provide to a project community [3]. Other motivations include
a developer’s ability to acquire skill and sustained experience from working in
multiple or different roles [34, 53, 66]. It can also include a desire to work on
software systems that the developer finds personally interesting, a desire to work
with well-regarded FOSSD experts, or to be recognized by project peers as a val-
ued and frequent contributor to a highly visible FOSS project [28, 25]. Similarly, it
can be that the developer routinely uses the FOSS system of interest, and wants
it to implement some additional feature or capability, or wants to reinvent pro-
cessing capabilities found in other software systems, or to add innovative system
features [64, 65, 58]. These conditions represent different ways for how participants
learn to collaboratively develop FOSS in different projects and different application
domains.

Motivations for participating in FOSSD stand in contrast to the traditional view
of software project management. Software project managers are suppose to design
technical work activities in ways that are satisfying and thus motivating to develop-
ers [5]. Project managers are also responsible for insuring developers collaborate
with one another when needed, and where developers are able to participate in
setting project development goals and providing process feedback/improvement.
Software project managers are expected to make SE work interesting, rewarding,
and satisfying, and if they cannot do this, then the SE project may fail or produce
low quality and hard to maintain software [5].

In contrast, the most frequently cited reason why software developers partici-
pate and contribute to FOSSD projects is to learn [23]. In other words, participating
developers come to believe FOSSD projects of interest are expected to provide ways
and means for individual and collaborative learning [cf. 14, 36]. Consequently, when
developers no longer value or lose interest in what can be learned from a FOSSD
project in which they participate, they may choose stop contributing to the project
and move on. In traditional SE, project managers shape working conditions and thus
the basis for collaborative work, while in FOSSD projects, individual participates
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must take responsibility for learning how to organize and manage themselves so as
to fulfill their personal motivations when working with other FOSS developers cur-
rently participating in the projects. Thus, in this regard, the different ways and means
for FOSS developers to learn things of greatest personal interest serve as individual
level affordances for engaging in collaborative FOSSD project work. Conversely,
developers who do not want to collaborate with the FOSS project developers at
hand will not be able to realize or appropriate the common FOSSD collaborative
learning affordances they find motivational, and thus they may move on to search
for another project of interest.

15.3 Resources and Capabilities Supporting FOSSD

What kinds of resources or development capabilities are needed to help make
FOSS efforts collaborative and successful? Based on what has been observed and
reported across many empirical studies of FOSSD projects, the following kinds of
socio-technical resources (or social capital) enable the development of both FOSS
software and ongoing project that is sustaining its evolution, application and refine-
ment, though other kinds of resources may also be involved [57, 59]. The following
sub-sections examine collaborative practices and affordances centered on different
resources and capabilities found in FOSSD projects.

15.3.1 Personal Software Development Tools
and Networking Support

FOSS developers, end-users, and other volunteers often provide their own per-
sonal computing resources in order to access or participate in a FOSS development
project. They similarly provide their own access to the Internet, and may even host
personal Web sites or information repositories. It is not uncommon that a FOSS
developer works on a project from a room at home, or on a laptop PC while traveling.
FOSS developers bring their own choice of software development tools and meth-
ods to a project, and sometimes the number of tools employed ranges into dozens.
The mobility of tools and laptop computers also enables the organization and enact-
ment of collaborative FOSS hackathons1 – marathon FOSS development experience
involving dozens of developers at a chosen destination for the purpose of collabo-
ratively analyzing, modifying, and rebuilding a given FOSS system. Participation
in such events often entails travel and related expenses often borne out of pocket
by each participant, though they also find such events personally and profession-
ally rewarding, convivial, and fun, even though involving long hours of difficult and
technically challenging work.

1 Description and examples of FOSS hackathons at http://en.wikipedia.org/wiki/Hackathon.
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Sustained commitment of personal resources helps subsidize the emergence
and evolution of the ongoing project, its shared (public) information artifacts, and
resulting open source code. It spreads the cost for creating and maintaining the infor-
mation infrastructure of the virtual organization that constitute a FOSSD project
[7, 48]. These in turn help create recognizable shares of the FOSS commons [2,
49, 50] that are linked (via hardware, software, Internet and Web) to the project’s
information infrastructure. So personal computers, FOSS tools, and hackathons are
affordances that help enable collaborative FOSSD.

15.3.2 Beliefs Supporting FOSS Development

Why do software developers and others contribute their skill, time, and effort to the
development of FOSS and related information resources? Though there are proba-
bly many diverse answers to such a question, it seems that one such answer must
account for the belief in the freedom to access, study, modify, redistribute and share
the evolving results from a FOSS development project [11, 12, 25]. However, it also
includes freedom of expression and freedom of choice [18, 60]. Neither of these free-
doms is explicitly declared, assured, or protected by copyright or commons-based
intellectual property rights, nor by end-user license agreements. However, these
freedoms are realized in choices for what to develop or work on (e.g., choice of
work subject or personal interest over work assignment), how to develop it (choice
of method to use instead of a corporate standard), and what tools to employ (choice
over which personal tools to employ versus only using what is provided). They also
are expressed in choices for when to release work products (choice of satisfaction
of work quality over schedule), determining what to review and when (modulated
by ongoing project ownership responsibility), and expressing what can be said to
whom with or without reservation.

The enactment of beliefs, values, and norms for why and how to develop FOSSD,
which constitute part of a FOSS developer’s mental model [cf. 20], that are repre-
sented in FOSS licenses and project narratives (Fig. 15.1.), serve as affordances
that enable collaborative FOSSD projects and teamwork. Similarly, failure to enact
and sustain such beliefs can lead to participants being challenged by others regard-
ing their commitment to collaboratively develop FOSS in a proper manner, so the
absence or failure of such an affordance can drive FOSS developers apart [15,
17, 19].

15.3.3 FOSSD Informalisms

Software informalisms [57] are the information artifacts that participants use as
resources to describe, proscribe, prescribe, or question what’s happening in a
FOSSD project. They are informal narrative resources that are comparatively easy
to use, and publicly accessible to those who want to join the project, or just browse
around. They are generally supported with lightweight tools [4, 68]. Nonetheless,
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Be collaborative

The Free Software Movement depends on collaboration: it helps limit duplication of effort
while improving the quality of the software produced. In order to avoid misunderstanding, try
to be clear and concise when requesting help or giving it. Remember it is easy to
misunderstand emails (especially when they are not written in your mother tongue). Ask for
clarifications if unsure how something is meant; remember the first rule - assume in the first
instance that people mean well.

As a contributor, you should aim to collaborate with other community members, as well as
with other communities that are interested in or depend on the work you do. Your work should
be transparent and be fed back into the community when available, not just when KDE
releases. If you wish to work on something new in existing projects, keep those projects
informed of your ideas and progress.

It may not always be possible to reach consensus on the implementation of an idea, so don't
feel obliged to achieve this before you begin. However, always ensure that you keep the
outside world informed of your work, and publish it in a way that allows outsiders to test,
discuss and contribute to your efforts.

Contributors on every project come and go. When you leave or disengage from the project, in
whole or in part, you should do so with pride about what you have achieved and by acting
responsibly towards others who come after you to continue the project.

As a user, your feedback is important, as is its form. Poorly thought out comments can cause
pain and the demotivation of other community members, but considerate discussion of 
problems can bring positive results. An encouraging word works wonders.

Fig. 15.1 An excerpt from a FOSSD project Web page that both encourages and guides how and
why project participants can collaborate. Source: http://www.kde.org/code-of-conduct/, accessed
October 2008

these artifacts serve as both workspaces where collaborative FOSSD work activities
(including reading, reviewing, writing, and learning) occurs, as well as the products
of such collaborations [14, 16, 37, 54, 57].

The most common informalisms used in OSSD projects include (i) communi-
cations and messages within project Email [68], (ii) threaded message discussion
forum, bulletin boards, or group blogs, (iii) news postings, and (iv) instant mes-
saging or Internet relay chat. These enable developers and users to converse with
one another in a lightweight, semi-structured manner, and now use of these tools
is global across applications domains and cultures. As such, the discourse cap-
tured in these tools is a frequent source of OSS requirements. A handful of OSSD
projects have found that summarizing these communications into (v) project digests
[16] helps provide an overview of major development activities, problems, goals, or
debates. These project digests represent multi-participant summaries that record and
hyperlink the rationale accounting for focal project activities, development prob-
lems, current software quality status, and desired software functionality. Project
digests (Fig. 15.2) record the discussion, debate, consideration of alternatives, code
patches and initial operational/test results drawn from discussion forums, online
chat transcripts, and related online artifacts [16].

Other common informalisms include (vi) scenarios of usage as linked Web pages
or screenshot galleries, (vii) how-to guides, (viii) to-do lists, (ix) Frequently Asked
Questions, and other itemized lists, and (x) project Wikis, as well as (xi) tradi-
tional system documentation and (xii) external publications [e.g., 24, 25]. OSS
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(ed. [Peter Sullivan] Note that the lack of  any guarantees on backward compatability, even with 'features'/ 'bugs' is one of  

1. Further trouble-shooting with the wx 2.6 drivers

20 Jun – 21 Jun  Archive Link: "[IRC] 20 Jun 2006 "
Summary By Peter Sullivan
Topics: Forms , Common
People: Reinhard Muller , James Thompson , Johannes Vetter , Peter Sullivan

Further to Issue #117, Section #2 (22 May : Layout in GNUe Forms with wx 2.6 driver), Reinhard 
Muller (reinhard) suggested to James Thompson (jamest) "if  you are bored, you can try again the 
wx26 uidriver", as Johannes Vetter (johannesV) had done "some massive changes and it might be 
that your issues with fscking up the boxes are solved". James said that, although he was busy,  "i 
really need to get that tested, as the dropdown box issues in 2.4 are preventing some selections 
from being allowed". So he was keen to have a version of  GNUe Forms that worked with the user 
interface driver for wx 2.6 as soon as possible.

Trying Johannes' new code for GNUe Forms with his existing GNUe Forms Definitions, James found 
problems - "none of  which are due to anything wrong with what you've done - it's all in my 
forms", where he had been relying on 'features' (such as overlapping text boxes) that Johannes had 
treated as 'bugs' and now fixed. Johannes confirmed that "overlaping is now being checked ... not only 
for boxes but for all widgets" . He added, "if  you click the detail-button you'll see the offending 
line in your XML-File - this makes debuging" a GNUe Form Definition (gfd) "a lot easier". James 
reported that all five of  his existing GNUe Form Definitions were not working with the new code -
but "i would still imagine it's something funky I'm doing in the form" rather than a problem
with Johannes' code. He noted that, on the last one, the problem that he had been having with the 
dropdown menu had been fixed, but the form now "aborts on query" .

the reasons why GNUe Forms remains at a version number below 1.0 as of  time of  writing, as discussed further in Issue 
#112, Section #4 (13 Apr : Forms approaching version 1.0?) . )

Fig. 15.2 A project digest that summarizes multiple messages including those hyperlinked (indi-
cated by highlighted underlined text) to their originating online sources.
Source: http://www.kerneltraffic.org/GNUe/latest.html, accessed July 2006

(xiii) project property licenses (whether to assert collective ownership, transfer
copyrights, insure “copyleft,” or some other reciprocal agreement) are documents
that also help to define what software or related project content are protected
resources that can subsequently be shared, examined, modified, and redistributed.
Finally, (xiv) open software architecture diagrams, (xv) intra-application function-
ality realized via scripting languages like Perl and PhP, and the ability to either
(xvi) incorporate externally developed software modules or “plug-ins,” or (xvii)
integrate software modules from other OSSD efforts, are all resources that are used
informally, where or when needed according to the interests or actions of project
participants.

All software informalisms are found or accessed from (xix) project related Web
sites or portals. These Web environments are where most OSS software infor-
malisms can be found, accessed, studied, modified, and redistributed [57]. A Web
presence helps make visible the project’s information infrastructure and the array of
information resources that populate it. These include FOSSD multi-project Web
sites (e.g., SourgeForge.net, Savanah.org, Freshment.org, Tigris.org, Apache.org,
Mozilla.org), community software Web sites (PhP-Nuke.org), and project-specific
Web sites (e.g., www.GNUenterprise.org), as well as (xx) embedded project source
code Webs (directories), (xxi) project repositories (CVS [24] or Subversion), and
(xxii) software bug reports [31] and (xxiii) issue tracking data base like Bugzilla
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(http://www.bugzilla.org/). Last, giving the growing global interest in online social
networking, it is not surprising to find increased attention to documenting various
kinds of social gatherings and meetings using (xxiv) social media Web sites (e.g.,
YouTube, Flickr, MySpace, etc.) where FOSS developers, users, and interested oth-
ers come together to discuss, debate, or work on FOSSD projects, and to use these
online media to record, and publish photographs/videos that establish group identity
and affiliation with different FOSSD projects.

Software informalisms as online artifacts which developers employ as their
online workspaces are where and in what FOSSD is organized, captured, reviewed,
and managed. Accordingly, these informalisms serve as affordances that facilitate,
enculturate, and document collaborative work in FOSSD projects.

15.3.4 Skilled, Self-organizing, and Self-managed
Software Developers

Developing complex software modules for FOSS applications requires skill and
expertise in a target application domain. For example, contributing to a FOSSD
project like Filezilla (http://filezilla.sourceforge.org) requires knowledge and skill
in handling file transfer states, actions, and protocols. Developing FOSS modules
or applications in a way that enables an open architecture requires a base of prior
experience in constructing open systems. The skilled use of project management
tools for tracking and resolving open issues, and also for bug reports contribute to
the development of such system architecture [51].

FOSS developers organize their work as a virtual organizational form [7, 18, 48]
that seems to differ from what is common to in-house, centrally managed software
development projects, which are commonly assumed in traditional SE textbooks.
In the decentralized virtual organization of a large ongoing FOSSD project like
the Apache.org or Mozilla.org, a hierarchical role/skill-based meritocracy [22, 6,
34] can arise. In such a meritocracy, there is no proprietary software development
methodology or standard tool suite that all developers must employ, but critical
decisions for what to do (e.g., overall system design) and how to do it will follow
from respected core developers [cf. 51]. Similarly, there are few explicit rules about
what development tasks should be performed, who should perform them, when,
why, or how. However, this is not to say there are no rules that serve to govern the
project or collective action within it.

FOSS project participants self-organize around the expertise, reputation, and
accomplishments of core developers, secondary contributors, and tertiary review-
ers and other peripheral users [9, 38]. FOSSD participants nearer the core have
greater control and discretionary decision-making authority, compared to those fur-
ther from the core [cf. 6, 9, 38]. Subsequently, core developers are expected to
provide guidance, example artifacts, routinely use FOSSD coordination tools (e.g.
CVS/Subversion, Bugzilla), and make critical decisions meritocratically. Together
these afford collaborative FOSSD. Similarly, other participants must be able to
both learn from and contribute to the efforts of the core developers. Together



www.manaraa.com

316 W. Scacchi

these realize a virtual, meritocratic, or self-managed form of decentralized software
project management [7, 58].

15.3.5 Discretionary Time and Effort of Developers

Are FOSS developers working for “free” or for advancing their career and profes-
sional development? Following the survey results of Hars and Ou [28] and others
[23, 27], there are many personal and professional career oriented reasons for why
participants will contribute their time and effort to the sometimes difficult and
demanding tasks of software development. Results from case studies in free soft-
ware projects like GNUenterprise.org appear consistent with these observations [18,
19, 60]. These include self-determination, peer recognition, project affiliation or
identification, and self-promotion, as well as belief in the inherent value of free
software [cf. 11, 12, 25]. Core developers are expected to provide example through
their own work practices, artifact contributions, and virtual project management
style that other participants can observe, acknowledge, and learn from in ways that
continue to afford collaborative FOSSD over time. Accordingly, the discretionary
time, skill and effort of FOSS developers commit to their FOSSD project give rise
to increased opportunity to collaborate, and increased collaborative activity can give
rise to increased commitment of discretionary time and effort.

15.3.6 Trust and Social Accountability Mechanisms

Developing complex FOSS source code and applications requires trust and account-
ability among project participants. Though trust and accountability in a FOSSD
project may be invisible resources, ongoing software and project development work
occur only when these intangible resources and mechanisms for social control are
present. Actions that embody trust and accountability arise in many forms. They
include (a) assuming ownership or responsibility of a project software module,
(b) voting on the approval of individual action or contribution to ongoing project
software [22], (c) shared peer reviewing [2, 11, 12], and (d) contributing gifts [3]
that are reusable and modifiable common goods [49]. They also arise through the
project’s recognition of a developer’s status, emerging reputation, and migration
from peripheral roles to core contributor [34]. The ways and means through which
FOSS developers exercise trust and social accountability mechanisms act to afford,
build, and sustain collaborative work practices in FOSSD projects.

15.4 Co-operation, Co-ordination, and Control in FOSS Projects

Getting software developers to work together, even when they desire to cooperate
is not without its challenges for coordinating and controlling who does what when,
and to what they do it to. Conflicts arise in both FOSSD [18, 33] and traditional
software development projects [56], and finding ways to resolve conflicts becomes
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part of the cost (in terms of social capital) that must be incurred by FOSS devel-
opers for development progress to occur. Minimizing the occurrence, duration, and
invested effort in such conflicts quickly becomes a goal for the core developers in an
FOSSD project. Similarly, finding tools and project organizational forms that min-
imize or mitigate recurring types of conflicts also becomes a goal for experienced
core developers. Focus of this section is thus directed to examining how differ-
ent tools, artifacts, and socio-technical interaction practices are employed to enable
FOSS developers to self-organize and govern project activities in an effective and
adaptive manner.

Software version control tools such as the concurrent versions system, CVS –
itself an FOSS system and document base [24] – have been widely adopted for use
within FOSS projects [cf. 11, 12, 21, 25]. Tools like CVS are being used as both (a)
a logically centralized mechanism for coordinating and synchronizing FOSS devel-
opment, as well as (b) an online venue for mediating control over what software
enhancements, extensions, or architectural revisions will be checked-in and made
available for check-out throughout the decentralized project as part of the publicly
released version. In addition, the FOSS architecture the project organizes itself about
may commonly be expressed through informal access/update rules and file/directory
archiving schemes that are coded and agreed to by FOSS code contributors [cf. 51].

FOSSD projects teams can take the organizational form of a meritocracy [cf. 22,
58] operating as a dynamically organized virtual enterprise [7, 18, 48]. A layered
meritocracy is a hierarchical organizational form that centralizes and concentrates
certain kinds of authority, trust, and respect for experience and accomplishment
within the team [cf. 6]. Such an organizational form also makes administrative gov-
ernance more tractable and suitable, especially when a FOSS project seeks to legally
constitute a non-profit foundation to better address its legal concerns and property
rights [49]. However, it does not necessarily imply the concentration of universal
authority into a single individual or directorial board, since decision-making may
be shared among core developers who act as peers at the top layer, and they may
be arrayed into overlapping groups with other project contributors with different
responsibilities and interest areas [cf. 34].

Traditional software project management stresses planning, staffing, budget and
schedule control activities. Virtual project management exists within FOSS commu-
nities, for example within projects developing FOSS-based computer games [58], to
enable control via project decision-making, Web site administration, and adminis-
tration of CVS/Subversion repositories (or other similar source code control tools).
VPM requires multiple people to act in the roles of team leader, sub-system man-
ager, or system module owner in a manner that may be short-term or long-term,
based on their skill, accomplishments, availability and belief in ongoing project
development. The implied requirement for VPM can be seen within Fig. 15.3, from
the FOSS project developing Planeshift, a free massively multiplayer online role-
playing game. Similarly, VPM exists to mobilize and sustain the use of privately
owned resources (e.g., Web servers, network access, site administrator labor, skill
and effort) that are made available for shared use or collective reuse by the ongoing
project [cf. 2, 60].
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Fig. 15.3 Description of virtual project management skills implied for a team leader
Source: http://www.planeshift.it/recruitment.html, accessed October 2008

Many FOSSD projects also post guidelines for how to report and discuss bugs,
unintended features, or flaws in the current FOSS system release. These guidelines
are embodied in online artifacts that developers follow in ways that suggest they
have elevated certain informalisms into community norms (Fig. 15.1) that act to
encourage or control appropriate behavior within FOSSD projects.

Thus, a variety of socio-technical arrangements are put into motion in a
FOSSD project in ways that encourage developers to cooperate, coordinate,
and control their development activities through tools, informalisms, shared
resources, and contribution practices. These collectively afford a lightweight cen-
tralized project management scheme through decentralized collaborative FOSSD
practices.

15.5 Alliance Formation, Inter-project Social Networking
and Community Development

How does the gathering of FOSS developers give rise to a more persistent self-
sustaining organization or project community? Through choices that developers
make for their participation and contribution to a FOSSD project, they find that
there are like-minded individuals who also choose to participate and contribute
to a project. These software developers find and connect with each other through
FOSSD Web sites and online discourse (e.g., threaded discussions on bulletin
boards) [45], and they find they share many technical competencies, values, and
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beliefs in common [7, 18, 20]. This manifests itself in the emergence of an alliance
of collaborating FOSSD projects that share either common interests or development
methods in projects that adopt a given FOSS system for subsequent application
development, or in a occupational network of FOSS developers [18].

Examples of FOSS multi-project alliances are readily recognized. First, there
are those that have established non-profit corporations or foundations like Apache,
Mozilla, Gnome, Perl, Eclipse, NetBeans, or Free Software Foundation [49].
Second, there are those organized and supported by for-profit corporations by Sun
Microsystems (e.g., OpenOffice), Hewlett-Packard, IBM, Nokia, and others [13,
52]. Third, other FOSS multi-project networks arise as the result of the architectural
integration of multiple, disparate FOSS systems into larger, more encompassing
system of systems [60]. Fourth, some FOSS projects produce systems that are
platforms, frameworks or libraries of components which in turn give rise to applica-
tion projects which are developed using these core systems. The Open Graphics
Rendering Engine (OGRE at http://www.ogre3d.org), for instance, serves as the
basis for dozens of user-led projects that build applications (like computer games)
using OGRE. These projects both depend on OGRE project, as well as the network
of other application projects, for FOSS code, updates, development expertise and
advice. In turn, the peripheral participation of FOSS developers in these application
projects can supplement the base of collaborating developers and users of the core
systems.

Becoming a central node in a social network of software developers that inter-
connects multiple FOSS projects is also a way to accumulate social capital and
recognition from peers. However, it also enables the merger of independent FOSS
systems into larger composite ones that gain the critical mass of core developers to
grow more substantially and attract ever larger user-developer communities [42, 59].
Multi-project clustering and interconnection enables small FOSS projects to come
together as a larger social network with the critical mass [43] needed for their inde-
pendent systems to be merged and experience more growth in size, functionality, and
user base. It also enables shared architectural dependencies to arise (perhaps unin-
tentionally) in the software components or sub-systems that are used/reused across
projects [cf. 9, 32, 51]. FOSSD Web sites also serve as hubs that centralize atten-
tion for what is happening with the decentralized development of the focal FOSS
system, its status, participants and contributors, discourse on pending/future needs,
etc. Subsequently, there is growing research interest in understanding, modeling,
and analyzing the social and technical networks of FOSS developers [9, 30, 41, 42].
Fig. 15.4 provides an example of a social network of FOSS developers spanning five
projects, but interlinked by just two developers.

Other studies [28, 35] indicate that upwards of two out of three OSS devel-
opers contributes to two or more FOSSD projects, and perhaps as many as 5%
contribute to 10 or more FOSSD projects. The density and interconnectedness of
this social networking characterizes the membership and in-breeding of the FOSS
movement [15, 17, 19], but at the same time, the multiplicity of projects reflects its
segmentation into specific socio-technical FOSSD domains.
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Fig. 15.4 A social network linking 24 FOSS developers in five projects through two “linchpin”
developers into a larger multi-project community [42]

All of these conditions for inter-project networking and alliance formation point
to new kinds of requirements for collaborative software development – for example,
network community building requirements, community software requirements, and
community information sharing system (Web site and interlinked communication
channels for email, forums, and chat) requirements [46, 57]. These requirements
may entail both functional and non-functional requirements, but they will most
typically be expressed using FOSS informalisms, rather than using formal nota-
tions based on some system of mathematical logic known by few. Similarly, sharing
beliefs, values, communications, artifacts and tools among FOSS developers enables
not only cooperation, but also provides a basis for “common ground,” shared mental
models and experiences, camaraderie, and learning [cf. 20, 31, 38].

As such, the emergence of alliances among multiple, internetworked FOSSD
projects helps to sustain and expand the viability of each participating project, along
with the community of contributing developers (who are also users) and peripheral
users. Together, they collectively afford collaborative software development con-
nections and opportunities that transcend the boundaries of the constituent FOSSD
projects.

15.6 FOSS as a Multi-project Software Ecosystem

As noted above, many FOSSD projects have become interdependent through the
networking of software developers, development artifacts, common tools, shared
Web sites, and computer-mediated communications. What emerges from this is
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Fig. 15.5 A depiction of a multi-project software ecosystem that supports Web-based information
infrastructures [33]

a kind of multi-project software ecosystem, whereby ongoing development and
evolution of one FOSS system gives rise to propagated effects, architectural and
integration dependencies, functional conflicts, or vulnerabilities in one or more of
the projects linked to it [33]. Fig 15.5 depicts part of the FOSS ecosystem that sup-
ports a Web-based information infrastructure that interlinks Mozilla/Firefox Web
browsers (and also Internet Explorer), Apache Web servers, NetBeans interactive
development environment, Java development community (JCP), and others.

Interdependencies that span a software ecosystem are most apparent when
FOSSD projects share source code modules, components, or sub-systems. In such
situations, the volume of source code of an individual FOSSD project may appear
to grow at an exponential rate when modules, components, or sub-systems are inte-
grated in whole into an existing FOSS system [8, 35, 59, 62, 67]. Such an outcome,
which economists and political scientists refer to as a “network externality” [50],
may be due to the import or integration of shared components, or the replication
and tailoring of device, platform, or internationalization specific code modules.
Such system growth patterns therefore seem to challenge the well-established laws
of software evolution [39, 40]. Thus, software evolution in a multi-project FOSS
ecosystem is a collaborative evolution (“co-evolution”) process spanning interre-
lated FOSSD projects, people, artifacts, tools, code, and project-specific activities
[59, 69].

It may also be useful to characterize a key evolutionary dynamic of FOSS as
reinvention [cf. 58]. Reinvention is enabled through the sharing, examination, mod-
ification, and redistribution of concepts and techniques that have appeared in closed
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source systems, research and textbook publications, conferences, and the interac-
tion and discourse between developers and users across multiple FOSS projects.
Thus, reinvention is a continually emerging source for how to recreate, improve or
invent new software functionality and quality in FOSS, as well as also a collabora-
tive approach to organizational learning in FOSS projects [31, 38]. Said differently,
reinvention is an effective way to learn how to innovate and invent, by re-producing
and re-experiencing the technical problems, dead-ends, anomalous bugs, and chal-
lenges that others before them may have done. Reinvention is a way to (virtually)
collaborate with those who have come before, which has long been a pedagogical
strategy for education and learning.

Last, the layered meritocracies that arise in FOSS projects [34] tend to embrace
or cultivate incremental innovations such as evolutionary mutations to an existing
software code base, over radical innovations. These incremental mutations are most
common in contributed revisions incorporated into daily/nightly builds of FOSS
code. Radical software system changes might be advocated by a minority of code
contributors who challenge the status quo of the core developers. However, their suc-
cess in such advocacy usually implies creating and maintaining a separate version of
the system through forking. Forking entails creating a duplicate copy of architected
source code, then modifying or refactoring into a distinct new architectural config-
uration. Such forking may split/fragment a FOSSD project team into distinct sets
of collaborators, which may results in no group having a sufficient critical mass of
core developers. Thus, incremental FOSS mutations tend to win out over time since
they more easily afford and sustain current collaboration patterns. Such affordance
limits major FOSS system changes to arise slowly through meritocratic coordina-
tion and consensus building that give rise to new system versions with alternative
architectural configurations [cf. 51, 58, 59].

15.7 Discussion

One discussion topic that immediately may come to mind is whether the collabora-
tion affordances found in the FOSSD studies cited above might also be found in SE
projects. At least four views of this topic can be considered.

First, we do not yet have in hand such a review of empirical studies of SE projects
that identifies the collaboration affordances found therein, though such studies are
starting to appear [cf. 29]. Though it might be an academic exercise to examine
common SE textbooks to see what affordances for collaborative SE they might sug-
gest or the reader might hypothesize, the point of this chapter was to focus review
and examination of empirical studies of FOSSD to find what collaboration affor-
dances are observed in these studies. So a fair and balanced comparison grounded
in empirical studies is not yet possible due to a lack of such studies of SE projects.

Second, it is unclear to what extent such affordances found in SE projects that
build proprietary (closed source) software systems in a centrally managed and
controlled way, would be readily comparable to FOSSD projects that are self-
organized and self-managed in a decentralized way. In traditional SE projects,
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developers are generally assumed to be collocated (although there are excep-
tions, like subcontracted, outsourced, or offshore development), while in FOSSD
projects, developers are generally assumed to not be collated (with few excep-
tions like hackathons). Thus, while such an investigation might produce some
sharp comparisons and keen insights, this is a matter that requires further empirical
study.

Last, it is unclear whether there are studies of closed source SE projects that are
organized as internetworked alliances, though it seems likely that networked multi-
projects exist, though perhaps within the boundaries of a large corporate framework,
or behind the corporate firewall [cf. 13].

15.8 Conclusions

This chapter provides a multi-level analysis of collaboration affordances that sup-
port free/open source software development work, through a review of dozens of
empirical studies of FOSSD. Various kinds of collaboration affordances were iden-
tified with respect to individual participation in FOSSD projects, resources and
capabilities that FOSS developers bring to a project, how FOSS developers coop-
erate and coordinate decentralized development activities, how multiple FOSSD
projects coalesce into inter-networked alliances, and how FOSS ecosystems give
rise to co-evolutionary patterns of growth and diversity. FOSSD can be understood
as a socio-technical approach to collaborative software development supported
through an array of collaboration affordances. The development of FOSS systems
entails both the collaborative development of a networked project community, as
well as the collaborative development of a network of software components and
online artifacts. Consequently, some topics for further study can also be identified
from this review.

First, it is possible to engage in systematic case studies of collaboration affor-
dances that arise in comparable set of FOSSD projects. The findings reviewed
in this chapter span multiple studies with different research methods, tools, data
sets, and discipline-specific analytical lens [cf. 26, 30]. As collaboration affor-
dances supporting software development are a relatively new topic of study, then
it is appropriate to consider examining multiple FOSSD projects close up and in-
depth to determine what affordances enable different kinds of collaborative activities
in different development task situations. Case studies indicate such studies may
rely more on qualitative, ethnographic field study and participant observation (i.e.,
become an active participant in one or more FOSSD projects to observe or discover
collaboration affordances in action) [26, 55, 61].

Second, it may be possible to develop ways and means for mapping, visualizing,
or animating collaboration affordances in action. As affordances associate proper-
ties of objects and actors that give rise to interactions in a situated environment, then
it may be possible to identify and graphically portray these data elements in various
kinds of networked representations [61]. There is a growing trend in studies focus-
ing on social networks or technical dependencies within FOSSD projects to render
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their data and associations as different kinds of networks [10]. As such, how best to
visualize collaboration affordances would be an intriguing avenue for exploration.

Last, as suggested in the Discussion section, there are numerous opportunities
to study collaboration affordances within traditional software engineering projects.
Similarly, there is need to systematically compare collaboration affordances found
in FOSSD and SE projects so as to see what’s similar, what’s different, and why. The
study of collaboration affordances in projects that seek to actively embrace and prac-
tice both FOSSD and SE is mostly unexplored territory, and many such projects can
be found at the Tigris.org “open source software engineering” Web portal. Finally,
as the review in this chapter indicates that affordances for collaborative software
development can be analyzed at different/multiple levels of analysis, then multi-
ple analytical lenses are now available to help focus new studies of collaborative
software engineering. This chapter marks a starting point for further study.
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Chapter 16
OUTSHORE Maturity Model: Assistance
for Software Offshore Outsourcing Decisions

Juho Mäkiö, Stafanie Betz, and Andreas Oberweis

Abstract Offshore outsourcing software development (OOSD) is increasingly
being used by the Software Industry. OOSD is a specific variant of Geographically
Distributed Software Development (GDSD). Compared to the traditional mode of
software development (i.e., in-house) GDSD is more edgy and puts at risk the
attainment of the expected results. Although the failure of an offshore outsourcing
software project may be caused by a variety of factors, one major complication is
geographical distance. Consequently we argue that risk avoidance in outshore soft-
ware development should be undertaken well in advance of the development launch.
This could be done by testing the offshore outsourcing relevance of each software
project and then the offshore outsourcing company involved. With this in mind we
have developed the OUTSHORE Maturity Model – OMM.

16.1 Introduction

The outsourcing of software development implies that an organization wholly or
partially contracts out software development to another organisation. If the part-
ner organisation is located abroad, this might be termed “an offshore outsourcing
of software development”. If the development takes place in physically far-flung
locations, it is called “Global Software Development” (GSD) [32] or “Distributed
Software Development” (DSD) [13]. Whether domestic or foreign, outsourcing can
be an uncertain undertaking. Nonetheless many companies use offshore outsourc-
ing to reduce time-to-market, to tap global resources, to profit from round-the-clock
development, and to reduce costs.

The goal of OOSD must always be to uphold competitiveness in the global mar-
ket. This goal should be promoted by the concise and purposeful employment of
every resource – information technology, talent and competence to assure a thriving
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offshore outsourcing project. All of which helps the company maintain ongoing
global penetration. However, global distribution of the development raises a number
of knotty questions concerning accomplishment and implementation. Often there
is a huge disparity between targets and the results attained. Outsourcing studies
reveal that 47% of buyers terminated their offshore outsourcing relationship pre-
maturely [39]. In 45% of cases the reason was poor provider performance and in
47% absent cost benefits [39]. Studies carried out in German SMU’s report that the
quality of work being done by the offshore outsourcing team tends to be inferior
to that of in-house development projects; consequently only around 45% are found
passable, yet prove unusable in 9–15% of cases [30]. Other studies revealed similar
results. For example, [31] reports on a survey of 414 engineers and development
managers working in partially or wholly offshore outsourced projects (US based)
which reveals almost half (45%) of the work performed by the offshore team was of
quite low quality and that 11% of it was unusable or actually a hindrance to progress.

Risk is inherent in business decision-making. This is clearly the case in OOSD.
Boehm states that post-mortems on the most unsuccessful software projects indicate
that failure might have been avoided if there had been explicit and early concern with
identifying and resolving the high-risk elements [6].

The technical, strategic or financial advantages of software offshore outsourcing
and GSD might be contrasted to the number of risks widely published in the scien-
tific and management literature (e.g., [22, 27, 29, 34, 35, 38]) where a number of
varying risks are debated. One list of specific software outsourcing risks is presented
in [35]. Based on a literature study, the authors identify ten distinct risk areas: the
risk of dependence, risk of loss of control over the activity, risk of loss of know-
how, risk of performance, social risk, risk of failure of the beneficiary, hidden cost
risks, risk of irreversibility, risk of conflict and disparity of culture, and the overall
global economic risk. Still, the authors do not diagnose technical aspects as being
so risky. Above all they stress pliable factors, such as a dependency growing on the
outsourcing partner and evolving events being seen as a risk.

One further aspect is considered by [29]. This author considers the company’s
aptness and readiness for outsourcing. To deal with this aspect, he classifies the
inherent risks into four groups: outsourcing experience, technology, the business
situation and management approach. Outsourcing potential is measured via a ques-
tionnaire consisting in 120 five-scored questions on the risk factors in an OOSD
project. Based on this result, a prediction is made of how likely outsourcing failure
or success will turn out to be. This approach judges the status quo before the project
starts. But, it does not contemplate process.

However, risk avoidance during software development is directly coupled to the
software development process and the risks factors [5]. This may prove inadequate
in offshore outsourcing projects. We agree with Boehm that risk avoidance, or at
least risk limitation, in a distributed software development project should be initi-
ated before the project is even launched. This could be brought about by assessing
the offshore outsourcing competence of the software project together with the off-
shore outsourcing company’s suitability. With this in mind we have developed the
OUTSHORE Maturity Model – OMM.
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16.2 Related Works

In the software industry, maturity models are employed to improve process, tech-
nology and personnel to ensure better performance. Generally these models assess
the startup maturity level of an organization and assess how a higher level might
be reached (cf. [16, 25]). The importance of maturity models is established by the
fact that product quality rests squarely on process maturity. Consequently a number
of maturity models have been developed to support a process upgrade in software
development and to describe the evolution of large and complex IS organizations
(e.g., [18, 21]). Contingent on the avowed purpose, a number of maturity models
focus on various aspects of software development. The common goal, however,
is to help organizations improve their software engineering management practice.
Table 16.1 offers an overview of the history of the commonly-applied maturity
model CMMI resting on the software development process.

Table 16.1 An overview of maturity models

Maturity model Focus

P-CMM
(People Capability Maturity Model)

The level of attention team members
should get from management during the
systems development process [16].

DMM
(Documentation Maturity Model)

Assessment of the quality of software
system documentation used in aiding
program understanding [33].

MMAST
(Maturity Model for Automated
Software Testing)

The enhancement of effective software
verification and validation [25].

SE-CMM
(Systems Engineering
Capability Maturity Model)

Assistance in coordinating and publishing
a model that would foster improvement
in the systems engineering process [9].

SA-CMM
(Software Acquisition Capability
Maturity Model)

The software acquisition capability of an
organization [15] defining five maturity
levels and several Key Process Areas
(KPAs) for consideration.

CMMI
(Capability Maturity Model
Integration)

Defines goals to be reached by a set of
processes in the organization to boost
the productivity of software
development as it becomes more
disciplined and controlled. CMMI
consists of five maturity levels and
twenty-two process areas [14].

CMMI-DEV
(Capability Maturity Model
Integration for Development)

Assistance in product and service
development processes [10].

CMMI-ACQ
(Capability Maturity Model
Integration for Acquisition)

Assistance in supply chain management,
acquisition, and outsourcing processes
in government and industry [11].
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Customary in maturity models is that they assist software organizations pro-
gressing along the evolutionary path from ad hoc, chaotic processes to mature,
disciplined software processes [23]. Note that the focus is clearly on process
improvement. See also for example SPICE (Software Process Improvement and
Capability Determination) an assessment of single software development processes
with process attributes [3].

It is well known that software project management is moulded by a multiplicity
of factors, such as communications, project schedules plus planning, and person-
nel, as stated in [6]. Further, attention is required on well-defined, -managed and
-documented software processes in the organization as they are thought to have a
significant payoff in terms of project success [17]. Therefore a total development
process encompassing individual perspectives that span all organizational levels is
to be recommended (cf. [17]). For, beyond software processes, communication and
co-ordination mechanisms should play a central role as success co-ordinates in dis-
tributed software development [12, 26] because they reduce project uncertainty and
improve performance. We would argue that problems in both communication and
co-ordination are not only related to the ongoing process. Such problems depend
as well on a given buyer maturity and the given project suitability for offshore out-
sourcing. The other relevant factor is the ability of the participating organizations to
perform at the structural level.

Software offshoring maturity models are used to measure the competence
of vendors to deliver the performance promised. Some work has already been
done covering the maturity of the buyer of distributed development services. The
Sourcing of IT Work Offshore (SITO) stage model [8] and the model presented in
[28] likewise describe a four-stage migration path for organizations performing off-
shore IT work. For them, the subject matter will be the buyer’s organization itself.
However, only a few studies have been done assessing the buyers’ ability to co-
operate offshore, while assessing the capability of any one project for offshoring.
The aim of the OUTSHORE Maturity Model, OMM, is to fill this gap.

16.3 The OUTSHORE Maturity Model (OMM)

The OMM is based on an empirical study carried out to broaden understanding
of the risk components of offshore software development. Twenty-nine experts in
the field of distributed software development projects came to be interviewed. The
semi-structured interviews lasted about one and a half hours and took place from
October 2006 to October 2007. The interviews were partly recorded and partly noted
down. The collected data was analyzed using Grounded Theory [19]. Based on the
results from the interviews risk factors were formulated. These risk factors were
subsequently evaluated with respect to their value in offshore software development
and with reference to the literature (cf. [2, 1, 20, 31, 30, 36, 35, 34, 27, 29, 28, 7]).
Based on this, 20 risk factors (e.g., knowledge management, socio-cultural distance,
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Fig. 16.1 Dimensions and risk factors of the OMM for the qualitative decision support of software
development projects

experience in offshoring, process maturity (cf. [2, 23, 24, 30]) became formulated
in order to be applied in the OMM (cf. Fig 16.1).

Generally we came to the conclusion that companies are quite aware of the
existing distributed software development project risks. Nonetheless, companies,
especially in the first few projects, were not in a position to identify or calculate
the existing problem, or the inherent risks in the prevailing situation. As stated in
[8] and in [28] offshore IT sourcing follows a stage model based on the increasing
maturity of the offshore outsourcing effort. At the beginning the buyer possesses no
comprehensive development skills – at the highest level, global sourcing becomes a
core competence.

The aim of the OMM is to help organizations decide whether they are capable of
executing successfully a software development project in a distributed environment
in co-operation with one or several partners. In the assessment of maturity, three
main dimensions are considered: the buyer, the supplier(s) and the project to be
developed within a distributed environment. Each dimension comprises a number
of factors used in the entire maturity calculation for that very dimension. Calculated
maturity is embodied in a single number from one to five (ajar to the five maturity
levels of CMMI). High maturity means that the risk for successful project execution
with respect to that single dimension will be low, and vice versa. Simultaneously,
it delivers a maturity level for every risk factor, while delivering hints on required
improvements.

16.3.1 The Calculation of OUTSHORE Maturity

As already mentioned, OUTSHORE maturity is calculated by means of risk factors.
These factors are mapped into three OMM dimensions: vendor, project and buyer.
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Therewith, we are able to calculate the suitability of all three dimensions for offshore
outsourcing. For example, the dimension vendor is defined by his experience in off-
shoring, by fluctuation, by socio-structural factors and any similar organizational
structure (cf. Fig. 16.1).

The maturity level is evaluated for and from all dimensions and is conducted as
follows:

1. Verification via the response to questions
2. Creation of a base for the evaluation of offshore outsourcing risk factors
3. Evaluation of possible influences on the offshore outsourcing project
4. Aggregation to maturity level.

The OMM utilizes (for the maturity of calculation responses) the questions that
relate to the factors. That is, Step One of the calculation of the maturity level: ver-
ification via the response to the questions. Each factor is linked to one or more
questions. The answers are scored on a scale from one to five, signifying that the
higher the score, the higher the measured maturity involving that single factor. The
maturity of factors with more than one answer is calculated from the score average.

Expressed formally, for each risk factor csfd the base of the maturity Bd is calcu-
lated separately as the sum of the maturity of singular risk factors fd divided by the
number of questions belonging to that risk factor (#fd) of that dimension:

Bd =
∑ fd

# fd
(16.1)

As an example, questions are given that lie within the dimension of the buyer and
the factor knowledge management. Eleven questions belong to that one risk factor.
Some of the questions are as follows:

• Have you established a project independent structural knowledge transfer?
• Do you support the communication by employing formal modeling languages

(e.g., UML)?
• Do you plan a recirculation of the knowledge transfer from your vendor to your

company?
• Do you consider the technical documentation will suffice for the operation and

maintenance of software?

The calculation of Bd is Step Two of the calculation of the OUTSHORE Maturity:
Creation of a base for the evaluation of the offshore outsourcing risk factors: the Bd

provides information on the suitability of an organisation for distributed software
development with respect to the risk factors. As some risk factors are more impor-
tant than others, the factors are weighted with the aid of expert opinion. Table 16.2
depicts the OMM dimensions, the mapped risk factors, and the weight of the risk
factors. As already mentioned, the risk factors are based on an empirical study.
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Table 16.2 Weight of the influence on the offshore outsourcing development project

Dimension (d) Risk factor (csfd) Weight (wf)

Vendor Experience in offshoring 3.6
Vendor Fluctuation 4.0
Vendor Socio-cultural factors 3.0
Vendor Similar organizational structure 2.0
Project Modularity 2.66
Project Project size 3.0
Project Stability of requirements 1.8
Project Architecture 1.3
Project Dependency of the internal knowledge 3.5
Project Security and privacy 1.3
Project Interfaces in the project management 2.4
Buyer Hidden costs 2.2
Buyer Experience of offshoring 3.6
Buyer Project management 4.5
Buyer Knowledge management 4.5
Buyer Quality management 3.3
Buyer Juridical framework 3.3
Buyer Structure of the organization 2.7
Buyer Negative impact on employers’ moral 2.0

The weighting is also empirically based. Experts have been asked to value each
risk factor from the buyer’s point of view in a scale from one to five. Expert inter-
views concerning weighting were conducted with our industrial partners from the
project OUTSHORE (cf. Acknowledgements). The weighting is assessed as being
the average of the valuation provided by the experts.

For example, for the buyer the vendor’s experience in offshoring is more impor-
tant than the comparable organizational structure (4.0 > 2.0). Within the dimension
buyer, the culture of the company is more significant than its experience in
offshoring or distributed software development.

We offer the weighting factor for the risk factors within the OMM as a default set-
ting. But, as it is a default setting, it can be adjusted according to the preferences of
the user of the OMM. The influence of each factor varies according to the timing of
its appearance and depending on the prevention of its negative effects. This is indi-
cated through the weighting. The weighting itself is Step Three of the calculation
of maturity level: Evaluation of the possible influence on the offshore outsourcing
project: for each dimension d the maturity Md can be calculated separately as the
sum of the base of the maturity of the singular risk factors Bd multiplied with the
weighting factor wf of that risk factor, and divided by the sum of the weighting
factor wf :

Md =
∑

Bf
∗wf∑

wf
(16.2)
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Next is Step Four: aggregation to maturity level is carried out by calculating the
overall maturity M. M is calculated as the sum of the maturities of all dimensions as
follows:

M =
∑

Md, d ∈ {buyer, project, vendor} (16.3)

However, a distributed software development project passes through certain
phases. Not only the maturity of the dimensions is important, but also the project
process phases. Yet to gain the maximum benefit from the OUTSHORE maturity
calculation, the questions need to be mapped into the OMM phase model that is
presented in the following section.

16.3.2 The OMM Phase Model

As already mentioned, the dimensions are classified by the questions. The OMM
should ease assessment of the risk factors of an OOSD project. On this account we
developed the OMM phase model. The OMM phase model is a classical software
development process model augmented by an even more vast preparation phase and
a transition phase (cf. Fig. 16.2). The process depicted is based upon our empirical
study and literature review (e.g., [1, 3, 37]).

Within the OMM, the risk factors are assigned to distributed software devel-
opment process phases so the maturity of the buyer, vendor and project will be
measured. This eases the offer of advice on the specific areas requiring improve-
ment and on the identification of responsible persons or areas of competence. In
the following we introduce the phases a distributed software development process
passes through.

The process consists of seven major phases (cf. Fig. 16.2) and a comprehensive
phase-wide project management containing the phases and linking them thereafter
into a chain of major project management activities. The first above-mentioned
question of the risk factor knowledge management (“Have you established a project
independent structural knowledge transfer?”) belongs to this phase.

Preparation

Business-Case

Project definition
and -initialization

Production and
Development

Evaluation

Transition

Integration

Project management

Fig. 16.2 The OMM phase model
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In each phase different tasks demanding diverse kinds of resources, roles and
activities are to be executed.

The first phase, “Preparation”, is devoted to project preparation. The preparation
concludes the search for a suitable project partner, a checking of the internal struc-
tures of the buyer organization in respect of its abilities to start a distributed project,
a checking of the communication structures and skills of employees, as well as a
clear formulation of expected results. Furthermore, the main motivation for out-
sourcing/offshoring needs to be clarified and the employees have to be informed.
Moreover, metrics to measure the success must be defined.

The second phase, “Business Case”, functions as a self examination for the buyer.
The development processes are checked in respect of their capability to be executed
by the vendor, the availability of personal skills within the buyer’s organization
and the suitability of the project for outsourcing are similarly to be checked. The
required roles and responsibilities will need to be clarified.

During the third phase, “Project definition and initialization”, both project dead-
lines and teams are defined, along with the outshore partner and the functional
and non-functional software requirements to be communicated. The communica-
tion structures within the project are defined and, if possible, face-to-face meetings
arranged (with sufficient time allowed to get to know all relevant people) will be
structured in this phase. The main focus is on the breaking down of social barriers.
The second above-mentioned question of the risk factor knowledge management
(“Do you support the communication with the use of formal modeling languages
(e.g., UML)?”) belongs to this phase.

The following phase “Production and development” is devoted to software
development. During this phase control mechanisms and communication structures
involving the outsourcing partner, as well as clear functioning communication links
between the two teams, will have to be checked iteratively.

During the “Evaluation” phase the results of the development phase are evaluated
and tested. The information flow from developers to buyers (and vice versa) has to
function properly. Lack of trust between the teams complicates this phase.

The “Transition” phase directs knowledge transfer from outshore provider to the
buyer and it serves the buyer to avoid dependency on the outshore provider. The
knowledge transfer requires working communication mechanisms and trust between
the employees. The third above-mentioned question (“Do you plan a recirculation of
the knowledge transfer from your vendor to your company?”) belongs to this phase.

During the “Integration” phase the developed software is to be integrated into
the existing systems. The integration contains a final testing of the new software
and therefore requires careful planning. The fourth above-mentioned question of
the risk factor knowledge management (“Do you think the technical documentation
will be sufficient for the operation and maintenance of the software?”) belongs to
this phase.

In linking the risk factors to the process we seek to ease and improve the planning
of the Global Software Development Process. The model supports communication
between various stakeholders (e.g., manager, process owner, business analyst, risk
manager, buyer, and vendor).
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Table 16.3 Level – buyer, vendor and project maturity

Level Buyer maturity Project suitability Vendor maturity

Level 1:
Initial

Almost no distributed
software development
project experience

Very complex and
mission-critical
projects

Grand cultural and
geographical distance
and no domain
knowledge, almost
none distributed
software development
project capability

Level 2:
Started

Some exposure to
distributed software
development projects

Complex and critical
projects

A lot of cultural and
geographical distance,
ad-hoc capabilities

Level 3:
Aware

Distributed software
development projects
mechanism emerge

Non-core projects cultural and
geographical distance,
strong capabilities

Level 4:
Managed

Distributed software
development projects
are understood and
controlled

Mitigation or
isolated new
development

Some cultural and
geographical distance,
domain knowledge

Level 5:
Mature

Global player, distributed
developments a core
competence

Simple, independent
and large projects

Marginal cultural and
geographical distance,
none fluctuation,
multi-shore supplier

The OMM phase model specifies major phases for distributed software develop-
ment and indicates tasks for each phase. However, the phase model does not say
anything about the dimensions of the maturity: buyer maturity, vendor maturity and
project maturity (cf. Table 16.3). In the following section this aspect of OMM is
discussed in more detail.

16.3.3 The Levels of the OUTSHORE Maturity Model

The OMM targets the assessment of the company’s offshore outsourcing capability
with respect to its suitability for the vendor and the suitability of the project being
offshore outsourced. The OMM might be used to measure both offshore and onshore
outsourcing. The OMM provides a tool for risk management [4]. OMM rates the
buyers’ maturity using the dimensions – strategy, experience in offshoring, project
management; knowledge management, hidden costs, quality management, juridical
framework, operational structuring, and negative impact on morale (cf. Fig. 16.1).
The project maturity is measured using the dimensions modularity, size, duration,
requirements stability, number of interfaces, type of the project, dependency of
the company’s internal knowledge, security, plus privacy as well as architecture.
The third aspect – vendor – is measured by socio-cultural distance, experience in
offshoring/outsourcing, and fluctuation.
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The goal of the OMM is to predict by means of various criteria whether a planned
project that is to be offshore outsourced might be completed successfully and to if
offshore outsourcing will be executed to ease and improve the planning of the Global
Software Development Process. A successful completion means that the resulting
software functions as expected and the development is finished punctually with-
out financial overrun. An offshore outsourcing specific maturity model is needed
when the risks of offshore development differ sharply from in-house or onshore
development. As mentioned above, the OMM measures the maturity in three dimen-
sions. Each dimension contains elements that are essential for a successful offshore
project. The OMM is organized into five maturity levels for each dimension, as
depicted in Table 16.3. The calculated value indicates the ability of an organisation
to offshore outsource software projects in respect of that dimension. In so doing we
believe that the organisation gets a better overview of its weaknesses. The identifi-
cation of the risk factors is often the problem, as stated in our interviews. The values
may be summarised into a combined OMM maturity.

16.4 Summary and Outlook

In this chapter we described the OMM – a novel maturity model to support soft-
ware offshore outsourcing, which offers companies a decision support system that
checks their preparation for offshore outsourcing development projects. The OMM
is developed using expert opinion and reference to the literature on outsourcing, off-
shoring, global and distributed software development as well as to maturity models.
Additionally, we have conducted a case study with German SMUs to evaluate the
OMM. Thus, we can deliver practical guidelines for practitioners to minimize risks
in offshore outsourcing development projects.

The OMM is based on a set of risk factors for successful OOSD, which are
extracted from interviews and literature studies. The OMM facilitates the delivery of
advice on specific areas requiring improvement and the identification of responsible
persons or areas of competence. A decision matrix on the planned project, as well
as on vendor preferences (in addition to the buyers’ maturity level) is needed to
provide a qualitative decision support tool that surveys all relevant risk factors of
an offshore outsourcing decision (cf. [1]). The dimensions and risk factors of this
decision matrix are depicted in (Fig. 16.1). The OMM provides a rigorous basis for a
priori detection of the risk factors of the three dimensions vendor, project and buyer
within the software development process. It offers an objective evaluation tool for
OOSD projects, thus providing a stable fundament for further studies of software
offshore outsourcing.
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Chapter 17
Collaborative Software Architecting Through
Knowledge Sharing

Peng Liang, Anton Jansen, and Paris Avgeriou

Abstract In the field of software architecture, there has been a paradigm shift from
describing the outcome of the architecting process to documenting architectural
knowledge, such as design decisions and rationale. Moreover, in a global, distributed
setting, software architecting is essentially a collaborative process in which sharing
and reusing architectural knowledge is a crucial and indispensible part. Although
the importance of architectural knowledge has been recognized for a considerable
period of time, there is still no systematic process emphasizing the use of architec-
tural knowledge in a collaborative context. In this chapter, we present a two-part
solution to this problem: a collaborative architecting process based on architectural
knowledge and an accompanying tool suite that demonstrates one way to support
the process.

17.1 Introduction

According to a recent paradigm shift in the field of software architecture [3, 4, 24],
the product of the architecting process is no longer only the models in the various
architecture views, but the broader notion of Architectural Knowledge (AK) [23]:
the architecture design as well as the design decisions, rationale, assumptions, con-
text, and other factors that together determine architecture solutions. Architectural
(design) decisions are an important type of AK, as they form the basis underlying
software architecture [19]. Other types of AK include concepts from architectural
design (e.g., components, connectors) [35], requirements engineering (e.g., risks,
concerns, requirements), people (e.g., stakeholders, organization structures, roles),
and the development process (e.g., activities) [10].
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The entire set of AK needs to be iteratively produced, shared, and consumed
during the whole architecture lifecycle by a number of different stakeholders as
effectively as possible. The stakeholders in architecture may belong to the same or
different organization and include roles such as: architects, requirements engineers,
developers, maintainers, testers, end users, and managers etc. Each of the stake-
holders has his/her own area of expertise and a set of concerns in a system being
developed, maintained or evolved. The architect needs to facilitate the collaboration
between the stakeholders, provide AK through a common language for commu-
nication and negotiation, and eventually make the necessary design decisions and
trade-offs.

However, in practice, there are several issues that hinder the effective stakeholder
collaboration during the architecting process, which diminishes the quality of the
resulting product. One of these problems is the lack of integration of the various
architectural activities and their corresponding artifacts across the architecture life-
cycle [17]. The different stakeholders typically have different backgrounds, perform
discrete architectural activities in a rather isolated manner, and use their own AK
domain models and suite of preferred tools. The result is a mosaic of activities and
artifacts rather than a uniform process and a solid product.

This chapter focuses on how to integrate stakeholder-specific approaches and
tools related to the individual architecting activities. We propose a two-part solution
to this problem: a process and an accompanying tool suite. The first part integrates
requirements engineering (RE) and the various architecting activities (e.g., analysis,
synthesis, evaluation, maintenance etc.,) and their consumed and produced AK, as
well as the related stakeholders, into a single process model based on the principle
of sharing AK. Note that we have decided to take RE into account: even though it
is technically not part of the architecting process, they are closely intertwined and
affect one another [31].

The second part is the Knowledge Architect tool suite that supports the collabora-
tive architecting process by realizing and integrating different tools that correspond
to the various activities of the process. The tool suite demonstrates one way to sup-
port the process, which is derived from the requirements of our industrial partner;
there are other ways to support the same activities depending on the organization,
the domain, and the specific project at hand. Currently, the tool suite consists of the
following tools: the Document Knowledge Client supporting architects writing an
architecture document; the Excel and Python Plug-ins supporting system analysts
performing quantitative architectural analysis; the Knowledge Repository acting as
the central location to store all the relevant AK; the Knowledge Explorer allow-
ing other stakeholders to search, inspect, and trace AK; the Knowledge Translator
translating AK from one language to the other for easy understanding. An impor-
tant feature of the tool suite is that the individual tools share their AK for specific
activities through a central knowledge repository, thus providing traceability of the
AK and automated checking across a wide range of architecting activities.

Section 17.2 of this chapter discusses collaboration in software architecting and
the role of AK. Section 17.3 presents the integrated process for collaborative archi-
tecting, while Section 17.4 introduces the accompanying tool suite. Section 17.5
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elaborates on the details of collaboration by applying the process and tooling, exem-
plified through a running example . The paper ends with a discussion on related
work, followed by conclusions and directions for future work.

17.2 Theoretical Background

17.2.1 Collaboration in Software Architecting

Architecting is an inherently collaborative process between architects and several
stakeholders, who have various concerns and viewpoints. Software architecture:

• Allows stakeholders to work together, communicate, negotiate, and eventually
agree upon the architectural decisions and rationale [34].

• Defines the partition of both the technical architecture and the organizational
teams building the system [5].

• Resolves errors and deals with risks throughout the system [5].
• Documents the explicit AK of the organization and the project to facilitate future

evolution [4].

In [17] the authors of five industrial architecture design methods propose a com-
mon model for architecting, comprised of three fundamental architecting activities:
architectural analysis, synthesis, and evaluation. They identify the problem of lack
of integration between these activities and their corresponding artifacts, and they
propose to deal with this problem through the concept of a backlog: a collection
of needs, issues, problems, ideas, which binds the 3 architecting activities together.
Therefore, the backlog acts as a central knowledge artifact that is both produced and
consumed by the 3 activities, facilitating their integration. In a collaborative setting,
this integration problem is aggravated due to the distribution of stakeholders who
have different backgrounds and expertise. In our approach, we also propose knowl-
edge sharing as a promising solution, but at a larger scale: an elaborate set of AK
is shared and reused across the proposed architecting process. The shared AK pro-
vides a common language for the distributed stakeholders to communicate, reason,
and ensure their concerns are being addressed.

The general goals of collaboration in software engineering identified in [38]
include: “Driving convergence towards a final architecture and design”, “Managing
dependencies among activities, artifacts, and organizations”, “Identifying, record-
ing and resolving errors”, and “Recording organizational memory”. We specialize
these goals for collaboration in architecting and restate them as follows:

• Producing an integrated and consistent architecture document that has emerged
from iterative stakeholder negotiation and agreements.

• Managing the dependencies and establishing traceability among architecting
activities, artifacts and involved stakeholders.
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• Identifying, recording and resolving architectural conflicts, risks, inconsistency,
and incompleteness.

• Recording the knowledge which is relevant to the whole architecting process.

To evaluate how the proposed process and tool achieve these goals, we revisit
them in the Conclusions section.

17.2.2 Knowledge Management for Collaborative Architecting

A distinction is often made in Knowledge management (KM) between two
types of knowledge [30]: tacit (personalized) knowledge that resides in peo-
ple’s head, versus explicit knowledge that is codified in some form. The latter is
often further characterized as documented or formalized knowledge. Documented
knowledge is expressed in natural languages or drawings, e.g., Word and Excel
documents that contain architecture description and analysis models. Formal knowl-
edge is expressed (or annotated) in formal languages or models with clearly
specified semantics. Typical examples of this form include AK ontologies [22]
or AK domain models [2, 9, 10, 20, 21, 35, 36] that formally define con-
cepts and relationships (e.g., Design Decision related to Concern). They aim
at providing a common language for unambiguous interpretation by stakehold-
ers. Formal AK can better facilitate activities for architectural collaboration than
documented or tacit AK [10]. However, formal AK entails additional cost and
effort [8].

Based on the knowledge types, Hansen et al. classify KM in two strategies
[16]: codification aims at codifying knowledge and making it available for any-
one through knowledge repositories; personalization, helps people to communicate
knowledge instead of storing it. Both KM strategies are employed in software engi-
neering activities [33]: most research and industry practice has been associated with
codification [11], while personalization has been given less attention. In this chap-
ter, we mainly focus on codified AK in collaborative architecting. Personalization is
also valuable, and will be further investigated in our future work.

17.3 A Process for Collaborative Software Architecting

The architecting process involves several stakeholders due to its cross-cutting nature
from requirements to implementation. For large projects, several teams may work
simultaneously on different parts or in different development stages of the whole
system, and exchange information. AK is the most important part of the exchanged
information and is of paramount importance to the architecting process.

To investigate the role of AK in the architecting process, we have closely co-
operated with our industrial partner, Astron (the Dutch radio astronomy institute),
which develops large and complex software systems for radio telescopes. What
makes these systems interesting from a collaborative AK perspective is: (1) the
development consortium consisting of multiple international partners, (2) the long
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development time of nearly a decade, (3) the long required operational lifetime of
at least 20 years.

In this context, we first identified and described the requirements to manage AK
in the architecting process of Astron through a number of use cases using our earlier
work [37]. We subsequently identified the AK needed to execute these use cases
and expressed this knowledge in a domain model [20]. Using both the domain and
the use cases, we derived and generalized a collaborative architecting process that
integrates the different architecting activities. To support this general process within
Astron, we developed a tool suite, which is presented in Section 17.4.

Figure 17.1 illustrates this derived process in terms of activities and AK produced
and consumed. Furthermore, it visualizes the close interaction between architecture
(solution space) and requirements (problem space), as they are closely intertwined
[31]. Every architecting activity can provide feedback to the RE activity, as new
insights, acquired during architecting, lead to a better understanding of the prob-
lem domain. It is noted that the AK-based architecting process is not sequential,
but highly iterative and incremental: achieving an acceptable architecture requires
an iterative design and evaluation process that allows refinement to address new

Fig. 17.1 The architecting process from an AK perspective
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requirements and trade-offs. The architecting activities and the related RE activity
are briefly described as follows:

(0) Requirements engineering. This activity fuels the architecting process with dif-
ferent elements (e.g., requirements, drivers, decision topics, risks, and concerns)
from the problem space. These form the main input for the activity of scop-
ing the problem space. Requirements engineers, customers and end-users are
typical stakeholders.

(1) Scope problem space. The architect selects the architecturally significant ele-
ments from the problem space and distills them into a concrete problem. To put
the problem in perspective, a cause (e.g., from technical aspects) of the problem
is described as well. This scoping is needed, as the problem space is usually too
big, thereby forcing the architect to focus only on the key issues. Typical stake-
holders of this activity are: architects, analysts, designers, and requirements
engineers.

(2) Propose solutions. The architect uses the existing architecture description and
the problem of the previous step, in order to come up with one or more solu-
tions that (partially) address the problem. Architects, analysts, designers, and
programmers are typical stakeholders in this activity.

(3) Evaluate solutions & choose one. The architect evaluates the solutions, and
makes a design decision by selecting among the proposed solutions (according
to the evaluation results). The decisions may entail making one or more trade-
offs and is accompanied by the appropriate rationale. Architects, designers, and
architecture reviewers are typical stakeholders of this activity.

(4) Evaluate architecture & modify the architecture description. Once a solution
is chosen, it is integrated in the architecture and the whole architecture is
evaluated. Based on the evaluation results, the architecture description has to
be modified to reflect the new status. Architects, designers, and architecture
reviewers are typical stakeholders.

The collaboration activities in architecting takes place in two dimensions: hori-
zontally and vertically. Horizontal collaboration occurs between sequential software
development activities, which can be in the macro- or micro-level of the software
development phases, e.g., from RE to architecting (the macro-level), or within archi-
tecting (the micro-level) from architectural analysis to architectural synthesis. In
horizontal collaboration, the output, of one activity becomes the input for the subse-
quent activity, e.g., the output of the RE activity (i.e., a requirements specification),
acts as the input of the architecting activity. On the other hand, vertical collabora-
tion happens when different people work on the same software development activity,
e.g., several designers make a class diagram using a UML tool collaboratively in the
design activity [32]. In this chapter, we cover the RE and architecting activities in
both collaboration dimensions. The next section elaborates on the tool suite that sup-
ports the different parts of this process, and emphasizes on the various collaboration
aspects.

The proposed process is meant to be generic enough so that it can be customized
and adapted into specific architecting processes used in organizations. As an
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example, we describe how it can be mapped to the generalized model of archi-
tecting proposed in [17]: architectural analysis maps to the scoping of the problem
space (activity 1); architectural synthesis maps to proposing solutions (activity 2);
architectural evaluation maps to evaluating alternative solutions and selecting the
optimal one (activity 3), as well as evaluating the architecture with the integrated
design decisions (activity 4). The advantage of this general applicability is that it
does not conflict with established architecting processes in the organizations. The
disadvantage is that it does not contain enough details to be applied on its own; it
has to be refined before it can be applied in practice.

17.4 The Knowledge Architect Tool Suite

To support the collaborative architecting process described in the previous section,
we implemented the Knowledge Architect (KA): a tool suite1 for creating, using,
translating, sharing, and managing AK. The process itself is described in a generic
way and does not delve into details about the various aspects of collaboration, as it
is meant to be as broadly applicable as possible. On the contrary, the KA tool suite
entails specialized support for integrating the various process activities and support-
ing collaboration between the stakeholders. In specific, the tool suite implements
the following features to serve the collaboration purposes:

• A central knowledge hub. In a large project, multiple stakeholders are involved
in the different process activities and typically manage and maintain their part of
the relevant AK. The knowledge hub is critical for gathering all the AK in one
resource, and providing an interface to all involved stakeholders to manage and
evolve it;

• Traceability management. In a collaborative architecting process, AK entities
are produced by various stakeholders. Traceability needs to be established
between these collaboratively produced artifacts (e.g., a requirement leads to
a design decision and when one changes the other needs to be updated). This
is of paramount importance during the architecture iterations, but also for the
architecture evolution;

• Knowledge translation among different stakeholders. Typically stakeholders
come from different backgrounds and have their own perspectives on archi-
tecture, usually limited to individual AK entities (see Fig. 17.2). Effective
knowledge translation (dashed arrows in Fig. 17.2) enables various stakeholders
to understand each other and speak through a “common language”. Furthermore,
knowledge translation provides the ability to present the “big picture”, and
especially the complex relationships between different parts of the knowledge;

• Automated checking. Different stakeholders working at varied activities and at
different times may touch upon the same or related AK entities. Automated

1 Part of the tool suite can be downloaded from http://search.cs.rug.nl/griffin
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Fig. 17.2 AK sharing from the perspectives of different stakeholders

checking may help to identify the conflicts, inconsistencies, and incompleteness
in the collaboratively produced AK entities. Especially, when the amount of
knowledge increases, this type of automated support is the only way to effectively
manage it.

Currently, the tool suite consists of 6 tools, which are presented in Fig. 17.3:
Knowledge Repository, Document Knowledge Client, Excel Plug\-in, Python Plug-
in, Knowledge Explorer, and Knowledge Translator. The figure illustrates how these
tools are mapped onto the architecting process and its associated activities (see
Fig. 17.1).

A brief outline of each tool is provided here. A more elaborate description is
presented in the next subsections, while the exact details can be found in [28]. In
short, these tools are the followings:

• Knowledge Repository is at the heart of the tool suite: a central location, which
provides various interfaces for other tools to store and retrieve AK.

• Document Knowledge Client is a Word plug-in that supports capturing (anno-
tating) and using (storing and retrieving from the Knowledge Repository) AK
within architecture and requirement documents inside Microsoft Word.

• Analysis Model Knowledge Clients support capturing (annotating) and using
(storing and retrieving from the Knowledge Repository) AK of quantitative
analysis models. This type of analysis concerns the investigation of alternative
architectural solutions by delivering (scenario-based) quantifications of one or
more quality attributes of these solutions. Specifically, two knowledge clients are
developed (Excel and Python Plug-in):

• Excel Plug-in supports capturing and using AK of quantitative analysis models
inside Microsoft Excel [20].
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• Python Plug-in supports capturing AK from quantitative analysis models
described in Python.

• Knowledge Explorer analyzes the relationships between AK entities. It provides
various visualizations to inspect AK entities and their relationships.

• Knowledge Translator (semi-)automatically translates the formal AK based on
one AK domain model into the AK based on another, so that various stakehold-
ers can understand each other when they use different AK domain models to
document AK.

We have mentioned before that the KA tool suite was built in the context of
the Griffin project2 for use within our industrial partner: Astron. Therefore certain
tools of the suite are aimed at integrating with the tools already used at Astron.
In particular this covers Microsoft Word for architecture documentation, Microsoft
Excel and Python for architecture analysis models. This is only one way to support
the architecting activities (see Fig. 17.3); various other tools could be potentially
built on the same underlying ideas of annotating AK on documentation and analysis
models.

In this section, we first introduce these tools, including the motivations of (why)
and functions provided by (what) these tools. In the next section, we present the RE
and architecting activities in a collaboration perspective by using these tools in a
concrete running example.

2 GRIFFIN: a GRId For inFormatIoN about architectural knowledge, http://griffin.cs.vu.nl/



www.manaraa.com

352 P. Liang et al.

17.4.1 Knowledge Repository

The Knowledge Repository, as depicted in Fig. 17.4, is a central location for stor-
ing and retrieving AK across a wide range of architecting activities. The tool makes
heavy use of technologies developed for the semantic web. For example, the open
source RDF store Sesame3 is used for storing and querying AK, while OWL (Web
Ontology Language) is used for modeling AK domain models. The Knowledge
Repository API provides the interfaces to communicate with all the Knowledge
Clients (Document Knowledge Client, Excel and Python Plug-ins) to store the anno-
tated AK into the repository. The Query Engine is used to query the AK entities and
their relationships in the repository, and visualize them in the Knowledge Explorer.
The Knowledge Translator performs the automatic translation. All the surrounding
tools are described in the remaining part of this section.

Knowledge Repository

Knowledge
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ModelProtégé
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Fig. 17.4 The Knowledge Repository with other tools in the KA tool suite

17.4.2 Document Knowledge Client

The Document Knowledge Client is a plug-in to capture and use explicit AK
inside Microsoft Word 2003. Various AK domain models can be deployed in the
Knowledge Repository for different users (stakeholders), who annotate the AK
using the AK domain models they can understand. Hence, the tool can be reused
with other AK domain models. The tool offers three basic functions:

AK capturing: Knowledge can be captured in a Word document by selecting
a piece of text and right clicking and choosing the appropriate option from the
pop-up menu. When adding a new AK entity, a menu appears which allows the

3 http://www.openrdf.org/
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user to provide additional information about the entity, e.g., Name, Type, Status and
Connections.

AK traceability: The relationships among AK entities comprise critical trace-
ability information in collaborative architecting. For example, to find out “who
(stakeholders) are concerned with a design decision”. The AK traceability can be
easily created or removed by pop-up menus in the Document Knowledge Client.

Design maturity assessment: One of the advantages of formalized (annotated)
AK is automatic reasoning support based on the underlying formal models. The
Document Knowledge Client supports the architect in assessing the completeness
of the architecture description. Based on the AK domain model, the tool performs
model checks using conformity rules to identify incomplete parts.

17.4.3 Excel Plug-In

The Excel Plug-in implements a domain model for quantitative architecture analysis
models in Microsoft Excel. The tool supports analysts in making the AK produced
during architecture analysis explicit. The aim is to facilitate the sharing of AK to
other analysts and the analysis results in a transparent manner to other stakeholders.
The tool offers the following three basic functions:

AK capturing: The major part of the AK of an architectural analysis model in
Excel is found in the cells. Often labels surrounding the cell denote the semantic
meaning of a cell. The tool allows analysts to make special annotations to cells. For
reviewing purposes, the tool also tracks the review state of each cell and allows for
comments.

AK traceability: An important feature of the tool is that it is capable of auto-
matically inferring the dependencies among the cells (AK entities). Hence, the
traceability relationships between AK entities are automatically captured.

AK visualization: To facilitate manual verification, the tool offers a visualiza-
tion of the AK dependency graph, which corresponds to the cells in the Excel
worksheets.

17.4.4 Python Plug-In

Similar to the Excel Plug-in, the Python Plug-in provides functionality to codify
the AK of analysis models. In this case, the analysis models are expressed using
the Python programming language. Both the Excel and the Python Plug-in assume
quite similar domain models. Hence, the concepts and functionality discussed in the
previous section also apply here.

17.4.5 Knowledge Explorer

Typically, the size of an AK repository will be considerable containing thousands
of AK entities. Finding the right AK entity, or even worse a number of related AK
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Fig. 17.5 The screenshot of the Knowledge Explorer

entities, from such a big collection is not trivial. Hence, there is a need for a tool
to assist in exploring an AK repository. The Knowledge Explorer can support users
in visualizing AK entities and their relationships. Figure 17.5 presents a screenshot
of the tool. It provides search functionality on the left hand side. The resulting AK
entities of this search action are shown in the list on the left hand side. The results
can be filtered using the drop down box on the left, thereby reducing the size of the
found results. The filtering is based on the type of the AK. The available options are
taken from the used AK domain model. Double clicking on one of the search items
results in illustrating a number of related AK entities in columns.

17.4.6 Knowledge Translator

The purpose of the Knowledge Translator is to translate the AK in various AK
domain models from one to the other and vice versa. This allows various users
to understand the AK codified in different AK domain models. This is critical for
stakeholders from different backgrounds to understand each other in a collabora-
tive architecting process. For example, a requirements engineer and an architect use
different AK domain models to produce and consume requirements (part of AK),
but need to have a common understanding. Currently, we employ the core model
proposed in [10] as a central model for the AK translation by an indirect translation
approach [27].

The AK translation can be done manually or automatically. Both ways have their
respective advantages and disadvantages on translation cost and quality, and stake-
holders can select an appropriate manner by trading off quality and cost in their own
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context. The initial cost-benefit analysis about the AK translation cost and quality
has been investigated in [27].

17.5 Collaboration Within the Process with KA

In this section, we present the collaboration within the proposed architecting pro-
cess, as it is supported by the KA tool suite. We discuss both horizontal and vertical
collaboration and demonstrate them through a running example. The context of
this running example originates from the architecting process used at our industrial
partner, Astron (see Section 17.3). In their projects, there is a large and complex
body of knowledge that needs to be shared frequently among the distributed stake-
holders. However, the different backgrounds and expertise of these stakeholders
restrains them from achieving a common understanding and thus hinders the inte-
gration of collaborative architecting activities. We have worked closely with Astron
for the software architecture of two projects that concern the next generation of
radio telescopes. The stakeholders involved with the architecting process in these
projects include end-users (scientists), requirements engineers, architects, analysts,
designers and architecture reviewers.

17.5.1 Requirements Engineering

17.5.1.1 Horizontal Collaboration

In a traditional software development scenario, a requirements engineer produces
the software requirements specification in a document, e.g., in a Word file. The
requirements engineer subsequently delivers the requirements documentation to
the architect for the architecture design. Within this process, the requirements
engineer, architect, and other related stakeholders will closely interact with each
other. This close interaction is needed to ensure common document understand-
ing [6], conciliate requirements [31], and improve the architecture design, etc.
In a distributed development environment or in a long-term development project,
this intensive interaction between the requirements engineer and the architect is
quite challenging. The geographical distance between the two actors hinders effec-
tive interaction, while staff reassignment in a long-term project would result in
knowledge vaporization [19]. In such cases, the Knowledge Repository acts as the
project requirements knowledge center: the repository provides valuable require-
ments information according to established AK domain models4, and it helps the
architect to understand the requirements correctly and unambiguously.

4 If there is no explicit specification, we assume that the AK domain model employed in various
requirements engineering and architecting activities for producing and consuming AK is the same
one, so that all stakeholders can communicate the AK in a common language.
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Running example: a requirements engineer5 specifies the requirements (including
architectural significant requirements, concerns and risks, etc.,) in the require-
ments document through discussion with customers. Afterwards, the requirements
engineer uses the Document Knowledge Client to annotate the knowledge about
requirements in this document, e.g., “The user (scientist) uses these interfaces to
propose and specify observations.” (an AK entity of concept Requirements), and
“This flexibility is of great importance especially for the high performance applica-
tions.” (an AK entity of concept Concerns). In the end, all the annotated AK entities
are stored into the Knowledge Repository. The architect retrieves the requirements
information from the Knowledge Repository, and scopes the problem (architectural
analysis) by choosing only the architecturally-significant ones (e.g., scoping the
decision topics from the requirements). The architect subsequently stores the newly
produced AK entities into the Knowledge Repository for further collaboration.

The whole collaboration process is illustrated in Fig. 17.6. The numbers in this
figure represent the actions sequence. The KA tool suite offers features to support
these collaboration activities. For example, the design maturity assessment function
based on formal AK can help the architect to find out whether all the requirements
have been considered or not. Another example is that the traceability of formal AK
can help the architect to trace from the design space (e.g., a design decision) back
to the original cause in the problem space (e.g., a requirement).

17.5.1.2 Vertical Collaboration

The typical scenario in RE is that all the system stakeholders can propose their
individual requirements, concerns, and risks from different perspective and at dif-
ferent levels (business goals, product features, user requirements, etc.). Inevitably,
there are always conflicts (e.g., conflict business goals, concerns) and mismatch
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Fig. 17.6 AK sharing process between requirements engineer and architect

5 The collaboration between other stakeholders is also critical, e.g., between the telescope user and
requirements engineer, but we focus on the requirements engineer and architect in the scope of this
chapter.



www.manaraa.com

17 Collaborative Software Architecting Through Knowledge Sharing 357

(e.g., no user requirements relating to a product feature) in the candidate require-
ments. The collaboration among all the requirements stakeholders is needed to form
a clear and unambiguous requirements specification using negotiation and reach-
ing compromises. Another situation is that different requirements engineers work
on the requirements specification for different part of the system at same time. In
this case, they also have to understand the requirements, which have been elicited
and documented by other requirements engineers for consistency. Hence, collabo-
ration among these requirements engineers is a necessity to achieve a coherent and
consistent requirements specification.

Running example: Customer A specifies the requirement “The flow of informa-
tion, either control or monitoring metrics, is in the vertical direction.”, and then
the requirements engineer uses the Document Knowledge Client to annotate this
requirement and store this AK entity into the Knowledge Repository. Customer B
uses the Document Knowledge Client to retrieve the latest requirements from the
Knowledge Repository. After this, Customer B finds out that the requirement “The
flow of information in the vertical direction” is not desirable. The customer wants
“The flow of information is in the horizontal direction”. In this situation, Customer B
adds his/her requirement, annotates, and stores this requirement as a conflict require-
ment with the requirement proposed by Customer A. Eventually, the requirements
engineers will try to negotiate and resolve the conflict with all the other requirements
stakeholders (e.g., through voting) or just inquire the high level project decision
maker to choose one.

17.5.2 Scope Problem Space

17.5.2.1 Horizontal Collaboration

“Scope problem space” is the first activity in the architecting process, aimed at
refining the problem space by selecting the architecture significant problem ele-
ments. The results of this activity are a set of architectural significant requirements,
e.g., problem, cause, and decision topics, which are further used in the follow-
ing activity to produce alternative architectural solutions. The architect uses the
Document Knowledge Client to annotate these architectural significant require-
ments, which he/she has identified, using the AK domain model, and stores them
into the Knowledge Repository. After this, the analyst can retrieve this AK from the
Knowledge Repository, understand it based on the AK domain model, and propose
alternative architectural solutions.

Running example: An architect analyzes an architectural significant requirement,
e.g., “In this (data) view on the system software, we focus on the control over the
data processing pipelines.”, and gets a decision topic, e.g., “the control method over
the data processing pipelines”, which has to be addressed by a design decision.
After that, the architect annotates and stores this decision topic into the Knowledge
Repository. The decision topics can be retrieved by the analyst from the Knowledge
Repository for further collaboration, e.g., in the proposing solutions activity.
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17.5.3 Propose Solutions

17.5.3.1 Horizontal Collaboration

Once the scoping of the problem space is complete and a clearer picture of the prob-
lem at hand is created, the architect has to define one or more alternative solutions to
(partially) address the problem. These alternatives need to be shared in some shape
or form, e.g., using a textual description, figures, presentation, or a conversation, in
order to be evaluated. For important decisions, the alternatives are shared with the
stakeholders: (1) to validate whether the alternative is indeed addressing the prob-
lem (2) to create understanding and support among the stakeholders for the choice
made in the next step.

Furthermore, thinking up alternative solutions often leads to new insights in the
problem space. For example, it is not uncommon to find requirements unclear on
key aspects or find out that a particular concern is being overlooked. Hence, close
collaboration with a requirements engineer (and perhaps other stakeholders as well)
is needed to sort out these aspects.

Running example: Following the running example from the previous activity, the
analyst retrieves this decision topic from the Knowledge Repository, and proposes
several alternative architectural solutions, e.g., “use real-time control method”, “use
batch control” and “use real-time or batch control depending on the data character-
istics”. After this, the analyst annotates these alternative architectural solutions in
the architecture document and stores these newly produced AK entities into the
Knowledge Repository. The architecture reviewer retrieves the corresponding con-
cerns, decision topic, and its alternative architectural solutions from the Knowledge
Repository. Based on this AK, the reviewer evaluates the alternative architectural
solutions against related user concerns. It is noted that there is a bidirectional
traceability relationship created automatically between a decision topic and an alter-
native architectural solution, as dictated by the relationships in the AK domain
model. With the bidirectional traceability relationship, when the architect changes
(removes, modifies) the decision topic, then the analyst will be notified to reconsider
the alternative architectural solutions which have been proposed.

17.5.3.2 Vertical Collaboration

For two reasons the proposed alternatives need to be shared among architects as
well. Firstly, sharing alternatives among each other inspires architects to consider
new solution directions. Often this takes the form of creatively combining existing
alternatives into a new one. Secondly, this sharing prevents architects from redoing
work already done by their peers. For analysts, sharing the alternatives is important
as well. The analysis of different experts has to be reconciled to evaluate a sin-
gle alternative. However, this requires a shared understanding among the analysts
what this alternative exactly entails. Consequently, the knowledge of what these
alternatives are should be shared.

Running example: The analysts use the Knowledge Explorer to find out what
kind of assumptions their fellow analysts have made in their analysis about the
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alternatives. Based on this knowledge, they can update their own analysis models.
Software architects can share a software architecture document to facilitate vertical
collaboration. Using the Document Knowledge Client, an architect can trace from a
Decision Topic to the proposed alternatives and read their description.

17.5.4 Evaluate Solutions and Choose One

17.5.4.1 Horizontal Collaboration

The horizontal collaboration in this activity takes place between the software archi-
tect/analyst and other stakeholders. It involves sharing four different types of AK.
The first type is the evaluation criteria that should be used to judge the various
alternative solutions. An important criterion is the extension to which a proposed
alternative solution addresses the defined decision topic. In addition, the captured
concerns during RE provides good candidates for evaluation criteria. Additional hor-
izontal collaboration with the requirements engineers is needed when the evaluation
criteria are not clear.

The second type is the relative importance of the aforementioned criteria.
Typically, there are differences among how the stakeholders perceive the impor-
tance of the criteria. Hence, the architect has to reach an acceptable compromise, and
through horizontal collaboration, communicate this compromise to the stakeholders.

The third type is the perceived pros and cons of each alternative, i.e., the ranking
of each proposed alternative solution on the defined criteria. Often conflicts arise
among stakeholders due to differences in the perception of these pros and cons and
their associated likelihood and strength. Since this knowledge forms the basis of
the rationale of the choice, it is of paramount concern to reach consensus among
the stakeholders about these properties. One of the goals of analysts is providing
detailed information about these properties in an objective manner to facilitate this
ranking.

The fourth type is the choice made among the alternatives. The associated ratio-
nale is based on the three earlier introduced elements. In practice, only this last
element is typically communicated. In this situation, the rationale and the three other
elements are only shared when asked for.

Running example: In the previous step, three alternative architectural solutions
were proposed and documented in a document: “use real-time control method”,
“use batch control” and “use real-time or batch control depending on the data char-
acteristics”. In this step, the architect writes down the choice made (e.g., for the
use real-time control method) and provides a small explanation for this choice, e.g.,
reducing costs by not requiring additional storage. Selecting this piece of text and
pressing the add AK entity (KE) button of the Document Knowledge Client adds the
text as a Decision to the Knowledge Repository. To provide traceability, the archi-
tect relates the newly created Decision KE to the chosen Alternative. Indirectly, this
also relates the Decision to the other considered alternatives through their common
Decision Topic.
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To provide rationale, the tool suite provides two options. The first one is found in
the Document Knowledge Client and allows the architect to relate an analysis result
from one of the Analysis Model Clients (Excel and Python Plug-ins) as either a Pro
or Con to an Alternative. For example, the predicted cost of the real-time alternative.
The second option is to use the Knowledge Explorer to find suitable concerns (e.g.,
cost) that could be an evaluation criterion.

17.5.4.2 Vertical Collaboration

Among analysts the vertical collaboration for this activity mostly consists of uni-
fying the analysis results of different experts in one consistent picture. In this way,
evaluating the alternatives becomes relatively easy. Vertical collaboration among
architects is about the knowledge sharing covering the aforementioned four AK
types, since it is this knowledge that makes up the reasoning behind the architecture.

Running example: To present an objective basis for decision making analysts
make a four column table in the architecture document with the first column being
the criteria used and the other three columns representing the three alternatives con-
sidered. The rows present for each criterion the analysis result for each alternative.
Using the Document Knowledge Client, the analyst creates the traceability between
the document and his/her quantitative analysis from Python or Excel. By sharing
this document with other analysts, each adding their own row, a complete unified
picture for the evaluation is created. Architects use a similar approach.

17.5.5 Evaluate Architecture and Modify the Architecture
Description

This evaluation activity is similar to the previous evaluation activity, but has a larger
scope. The previous activity focuses on the evaluation of alternative architecture
solutions while this activity evaluates the entire architecture with the incorporated
new design decision (chosen solution). Consequently, the collaborations through
AK sharing of these two evaluation activities are quite similar. Hence, we do not
repeat them again. We focus on the activity “modify the architecture description”.

17.5.5.1 Horizontal Collaboration

Collaboration in this activity happens between sequential activities, i.e., horizontal
collaboration from architecture description to detailed design. In this collabora-
tion, the Knowledge Repository can also act as the hub in which the architects and
designers share the architecture description information.

Running example: An architect makes a design decision “use real time control
during data taking and processing”, annotates, and stores this AK entity into the
Knowledge Repository. A designer retrieves the latest design decisions from the
Knowledge Repository and makes a detailed design which is based on this design
decision.
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17.5.5.2 Vertical Collaboration

Based on the evaluation results, an architect modifies the design and documents the
outcome of design, using natural language or special notations (e.g., Architectural
Description Language or UML) in a document. The architecture description can be
completed by a single architect in a small project, but for a large project, several
architects will be working together for the various parts of the system. The collabo-
ration among them is essential to produce an integrated and consistent architecture
document in the end. The Knowledge Repository acts as the hub in which all the
architects share the architecture description information with each other.

Running example: One of the user concerns about the system is stated as
“Performance issue is in a higher priority than cost in this system”. Architect A
makes a design decision to address this concern as “use real time control during data
taking and processing”, and annotates and stores this AK entity into the Knowledge
Repository. Architect B makes another design decision to address the same concern
as “limit the data payload during data taking and processing”, annotates, and stores
this AK entity into the Knowledge Repository as well. Architect C retrieves the lat-
est design decisions from the Knowledge Repository and uses the design maturity
assessment function provided by Document Knowledge Client to verify the architec-
ture design. The design maturity assessment function detects that these two design
decisions address the same concern and are actually in conflict with each other.
Therefore, Architect C tries to negotiate with Architects A and B to come up with
a single design decision, e.g., “use real time control during data taking and pro-
cessing”. Other defects or weak points can also be detected by the design maturity
assessment, such as incompleteness. Architect C annotates the new design decision
and stores (updates) the Knowledge Repository for further collaboration with other
architects.

17.5.6 Feedback Loop

Feedback can be provided from any architecting activity to the RE activity, as for
example new user concerns, solutions and design decisions pose new requirements.
Architecting is a highly iterative process. In each iteration, the requirements are
revisited until all the architectural significant requirements are satisfied and all risks
are mitigated. The Knowledge Repository is the central storage of AK produced in
all activities, and supports feeding this knowledge back to the RE activity.

Running example: An example of collaboration that concerns providing feedback
to RE is the following: the architect makes a design decision “use SAS (a soft-
ware package for data visualization) for data observation”, annotates, and stores this
design decision into the Knowledge Repository. A requirements engineer retrieves
this design decision from the Knowledge Repository and finds that this design deci-
sion results in a new requirement “the data observation should be visualized in
GUI”. The requirements engineer annotates and stores this newly-produced require-
ment into the Knowledge Repository. In this way, (other) requirements engineers
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can retrieve the updated requirements from the Knowledge Repository and validate
the consistency between the new requirement and the existing ones.

17.5.7 Architectural Knowledge Translation

AK translation is a common function in all activities (both RE and architecting),
since the involved stakeholders typically use different AK domain models to pro-
duce and consume the AK. It is comparable to human language translation, were
people from different countries speaking different languages try to communicate. A
translator is needed for effective communication between them, as he or she trans-
lates from one language to another and vice versa. The quality of the translation
depends on the quality of the translator, i.e., how correctly the translator can translate
knowledge. In AK translation, various translation methods can be employed with
their specific advantages and disadvantages depending on the translation context
(number of involved AK domain models and AK entities, etc.,) [26, 27].

Running example: A requirements engineer working at branch A of Astron uses
the AREL AK domain model [35] to annotate knowledge about requirements e.g.,
“The user (scientist) uses these interfaces to propose and specify observations” (an
AK entity of AREL concept Functional requirement), and “The new user (scientist)
shall know how to use these interfaces to propose and specify observations in 2 h”
(an AK entity of AREL concept Non-functional requirement). These two AK enti-
ties are subsequently stored into the Knowledge Repository. An architect working
at branch B of Astron uses the LOFAR AK domain model [18] to consume and pro-
duce AK. In particular, the architect uses the concept Requirement from the LOFAR
AK domain model to retrieve all the requirements information from the Knowledge
Repository which has been produced by the requirements engineer of branch A. Due
to the different requirement concepts being used by the AK producer (requirements
engineer at branch A) and consumer (architect at branch B), knowledge translation
is needed. The Knowledge Translator uses the defined AK concept mapping rela-
tionship to translate AK entities. For example, the AREL AK concept Functional
requirement and Non-functional requirement are both the subClassOf the LOFAR
AK concept Requirement. Using this relationship, the Knowledge Translator trans-
lates the two AK entities annotated in the AREL domain model into the AK entities
in the LOFAR domain model and stores translated AK entities into the Knowledge
Repository. After this translation, the architect at branch B can retrieve all the
requirements information from the Knowledge Repository.

17.6 Related Work

Computer Supported Cooperative Work (CSCW) in software engineering com-
prises all software engineering methods, norms, and tools that support teamwork
flexibly and effectively [7]. CSCW concentrates on improving the efficiency of
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groupware [25] for software development. It focuses on the vertical collaboration
in the software development lifecycle, e.g., the collaboration among requirements
engineers or among designers. One such example is ProjectIT-Studio, an integrated
environment that supports collaborative RE by combining wikis with CASE tools
for requirements specification and validation [14]. This tool can assist non-technical
stakeholders during the requirements specification and help requirements engineers
for a seamless integration with dedicated RE CASE tools. ProjectIT-Studio fosters
the stakeholders’ involvement in collaborative RE from a socio-technical perspec-
tive. Another example is the UML profile UML-G for cooperative UML modeling
in the design activity [32]. It supports software modeling by explicitly representing
shared data, roles and actors in cooperative sessions. UML-G stresses the sharing of
design outcomes (i.e., models), but does not pay attention to the rationale underneath
the design.

A CSCW approach for architecting was proposed in [15] addressing the collabo-
rative architecture modeling of complex component-based systems. A collaborative
modeling tool was provided for the architecture design team in which several archi-
tects design architecture cooperatively. Multiple architects are able to concurrently
access and manipulate the software architecture information stored in a server
machine. The shared software architecture information in this tool is mostly the
design artifacts (e.g., components, data flows, external entities, etc.). There is no
support to store information about design decisions and rationale.

Similarly, Maheshwari and Teoh implemented a web-based tool for collabora-
tive software architecture evaluation, supporting the Architecture Tradeoff Analysis
Method (ATAM) [29]. They argue that the ATAM method has its limitations in
an increasingly globalized software industry in which the distribution of develop-
ment teams is extensive. Their web-based tool provides a mental mapping from
the physical world to the internet world. For example, their tool set provides com-
munication tools, such as chatting, brainstorming, voting tool, etc. The tool set
also provides some assistant tools for ATAM, such as Utility Tree Viewer/Editor,
Features Evaluator, etc.). Most of the knowledge exchanged by their tool set is per-
sonalized knowledge, which is often difficult to understand by users who come from
different backgrounds.

Farenhorst et al. use wikis to support collaboration, communication, and con-
sensus decision making in the architecting process of distributed development by
sharing AK [13]. They suggested that, for successful AK sharing, it is necessary to
tailor the types and content of AK for sharing according to the concrete architecting
process [12]. Their work focuses on personalized (e.g., by using yellow pages) and
documented AK and not on formal AK.

PAKME (Process-centric Architectural Knowledge Management Environment)
is a web-based tool aimed at providing knowledge management support for the
architecting process [1]. PAKME focuses on various collaborative features (e.g.,
collaborative decision making) for distributed stakeholders involved in the archi-
tecting process by managing codified AK (pattern, decision etc.,) and personalized
AK (contact management, online collaboration, etc.). Other related work on AK
sharing and reusing can be found in the SHARK workshop series [3, 4, 24].
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17.7 Conclusions and Future Work

AK is widely accepted and recognized to be of paramount importance for the suc-
cess of software architecting. However, the collaboration among the stakeholders
involved in the architecting process is hindered by the lack of integration of archi-
tecting activities and the corresponding AK. This has severe implications for the
quality of both the architecting process and the product. This chapter presented a
collaborative architecting process and the accompanying tool suite that integrate the
architecting activities through AK sharing.

The process and the accompanying tool suite address the four goals of collabo-
ration in software architecting identified in Section 17.2.1:

(1) Using the central Knowledge Repository and Knowledge Client tools, an
integrated and consistent architecture document can be produced through
stakeholders collaboration;

(2) Using various AK domain models to capture (annotate) AK in the Knowledge
Clients, dependencies and especially traceability among architecture artifacts
can be effectively managed in the Knowledge Repository;

(3) Using the functions provided by the Knowledge Client tools (e.g., design matu-
rity assessment of the Document Knowledge Client), the architectural conflicts,
risks, inconsistency and incompleteness can be identified, recorded and resolved
based on the formal relationships defined in the AK domain model and semantic
web inference;

(4) Using the central Knowledge Repository, all the knowledge which is relevant to
the whole architecting process (AK) is recorded.

Although the proposed approach (process and tool suite) was derived from a
specific organization, it is generally applicable to other organizations: as explained
in Section 17.3, the proposed collaborative architecting process is orthogonal to
current architecting processes. Due to its generic nature, it has to be adapted
and customized into an existing architecting process before it is put into prac-
tice. For the accompanying tool suite, some general tools (Knowledge Repository,
Document Knowledge Client, Knowledge Explorer, and Knowledge Translator) can
be adjusted and employed to the architecting processes mentioned above since they
follow closely the proposed process. The Excel and Python Plug-ins have been
developed according to Astron’s needs, and can only be used if other organizations
have similar needs (quantitative analysis).

The KA tool suite has been used and (empirically) validated in two industrial case
studies at Astron for quantitative analysis of architecture design [20] and enrichment
of architecture documentation [18]. In [20] the tool suite was deemed effective for
facilitating AK sharing for verification and validation of quantitative architectural
solutions. In [18] we proved that the tool suite helps to partially address the short-
comings of current architecture documentation approaches of large and complex
systems.

In the future, the integrated collaborative architecting process with the tool suite
should be further validated in a larger industrial project with a cost-benefit analysis.
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The tool suite needs to be further improved with respect to its usability and scala-
bility. Finally, we plan to extend this suite with other tools for a wider application
of AK sharing (e.g., UML/ADL modelers, Email Plug-in, and other quantitative
analysis tools).
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Chapter 18
Collaborative Product Line Requirements
Engineering Using Rationale

Anil K. Thurimella

Abstract Variability management is the central part of software product line
engineering. Due to the separation of domain and application engineering, prod-
uct line requirements engineering encounters several collaboration problems during
variability management. These collaboration problems have an additional layer
of complexity, in case, product line organizations are geographically distributed.
To address the collaboration problems, we propose a new methodology called
issue-based variability management, which is based on the extension of variabil-
ity management using rationale management. In particular, variability meta-model
is viewed as a part of rhetorical rationale model. The methodology is explained and
evaluated based on a combination of orthogonal variability model (OVM) and a
rationale management approach based on questions, options and criteria (QOC).

18.1 Introduction

Software product line engineering [17] enables customization of products for vari-
ous market-segments from an abstraction called a product line platform. The set of
products are developed from a product line platform is termed as a software prod-
uct line. Software product line engineering provides several advantages based on
reuse; quicker time-to market, improved cost savings and defect rates. Using soft-
ware product lines several companies have recorded success stories. For example,
Siemens AG Medical Solutions has achieved a 57% reuse of test cases by adopting
product lines. Before the adoption of product lines, no reuse was recorded [17].

A product line platform is made up of several assets. An asset could be a system
model element (artifacts that are used in software development such as use cases,
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classes, test cases etc) or a variability model element, an abstraction for variability.
Variability is introduced in product line platform to allow customization and reuse
of artifacts to address the needs of different market segments. Variability manage-
ment involves several activities. Variability identification covers identification and
representation of variability; product instantiation which deals with the resolution
of variability for individual products of a product line; and variability evolution,
which addresses the change of variability itself. Product line evolution includes the
evolution of system model elements and variability model elements.

Software product line engineering involves two activities, domain engineering
and application engineering. Domain engineering is an activity in which assets
of a product line platform are identified, implemented and maintained. Another
activity, application engineering is responsible for instantiating products from a
product line platform. In product line requirements engineering, the activities of
variability management are to be performed based on collaboration of domain and
application engineering. Therefore, supporting collaboration between domain and
application engineering is critical. The communication problem between conflicting
views exists from the level of single system requirements engineering. To address
the collaboration between domain and application engineering, in this contribution,
variability management is extended using rationale management in order to enable
issue-based collaboration1 between domain and application engineers. The col-
laboration supported by a rhetorical model is termed as issue-based collaboration.
Rationale is defined as the reasoning that leads to a system model [6]. Rationale
management is viewed as a special branch of collaborative software engineering.

This chapter is organized as follows. The collaboration problems during vari-
ability management are presented and discussed in Section 18.2. Background
information, in particular orthogonal variability modeling (OVM) and rationale-
based unified software engineering model (RUSE) are covered in Section 18.3.
Related work is described in Section 18.4. The methodology is presented and illus-
trated in Section 18.5. The empirical evaluation is presented in Section 18.6 and the
paper is concluded in Section 18.7.

18.2 The Communication Problems

Damian and Zowghi raised that lack of collaboration between remote stakehold-
ers is a major problem in distributed requirements engineering of single system
development [3]. As product line organizations involve more stakeholders than sin-
gle system development, collaboration between remote stakeholders is even more
problematic in software product line engineering.

In a product line organization, domain and application engineering are separated
and are realized by a domain engineering team and several application engineering

1 Previously, it was viewed as informal collaboration [26, 27].
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teams. Due to this separation, their tasks are also different. The task of domain
engineering team is to introduce and maintain variation points, while the task of
an application engineering team is to instantiate variation points. Furthermore, the
clients of a domain engineering team are several application engineering teams,
where as the clients of an application engineering team are the customers from a
market segment. This leads to the projects with different timelines, milestones and
stress factors for these teams. These factors could contribute to inconsistencies in a
product line system: A domain engineering team might be busy in maintaining the
product line platform, while an application engineering requires to perform product
instantiations. In this context, application engineering teams tend to develop arti-
facts from scratch instead of instantiating variation points. This leads to redundant
development of artifacts, which is an inconsistency in a product line system. The
inconsistent product line system is a result of weak coupling between domain and
application engineering.

Let us consider an example (refer Fig. 18.1), where a product line platform has a
variation point, Routing with the following variants: Traffic congestion,
Rerouting, Automatic routing and Multi-destination rout-
ing. In application engineering, Traffic congestion is instantiated from
Routing for P1. But in the case of P2, Automatic routing is instantiated,
while Traffic congestion is developed from scratch within the application
engineering team. This is a redundant development of Traffic congestion,
which is an inconsistency in product line system. To achieve a strong coupling
between domain and application engineering, issue-based collaboration is to be sup-
ported during product instantiations between domain and application engineering.
This is a new collaboration pattern in software product line engineering, which does
not exist in single system development.

Fig. 18.1 Redundancies during product instantiation, in a weakly coupled product line system
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In the scenario of pulling up an asset (refer Fig. 18.2), domain engi-
neers pull-up artifacts that are developed by various application engineering teams.
An application engineering team focuses only on the development of their product,
but does not care about other products. Because of lack of time for communication
and competition between product teams, the participants of an application engineer-
ing team tend to hide artifacts from the other application engineering teams. But,
pulling out reusable artifacts developed by application engineering teams and cre-
ating variability is a major concern for domain engineering team. In this context,
because of conflict of interests, domain engineers fails to pull-up artifices which
again leads to inconstancies in a product line system. To achieve a strong coupling
between domain and application engineering, issue-based collaboration is to be sup-
ported during product line evolution. This is another collaboration pattern specific
to software product line engineering.

The new collaboration problems exit from the stage of co-located domain and
application engineering. When transitioning to distributed product line develop-
ment, achieving a strong coupling between domain and application engineering is
even more challenging. Currently, many product line organizations are developing
products for global markets [16]. In this context, a domain engineering team can
work in one country (e.g., Germany) while the application engineering teams are

Fig. 18.2 Pulling up an asset, a collaboration pattern during product line evolution
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present in several different cultures (e.g., US, India & China). Furthermore, in large
product line organizations, domain engineering could be distributed. Therefore,
issue-based collaboration for the two collaboration problems is to be supported
across geographically distributed locations. As product line organizations involve
more stakeholders when compared with single system development organiza-
tions, all discussions and decisions may not happen in face-to-face meetings.
In this prospective, issue-based collaboration is to be supported between remote
stakeholders in product line organizations to perform variability management.

Traditionally variability is identified by re-engineering artifacts based on data-
mining [11]. The re-engineering based approach generates an initial variability
model, which has to be adopted by the collaboration of domain experts. Therefore,
collaboration is to be supported for variability identification as well. As collabora-
tion is to be supported for various activities like, variability identification, product
instantiation and product line evolution, it is collaboration is an aspect that crosscuts
various activities of variability management.

18.3 Background

To address the collaboration problems, which are characterized with conflicts-
of-interests between domain and application engineering, negotiations are to be
supported. Fischer and Ury proposed the Harvard negotiation model to effectively
draw agreements on business deals, union disputes and hostage situations [7]. They
focus on the interests and mutual gain participants. This is also called a win–win
approach. Later, Kunz and Rittel triggered the use of rationale models to support
negotiations [13].

Rationale models are rhetorical models, which have been used to support col-
laboration between project participants. Issue-based information systems (IBIS) is
the early rationale approach and supports collaboration between stakeholders for
resolving wicked-problems [13]. A wicked-problem is an issue, which cannot be
solved algorithmically, but could be solved using discussions and debates. The ini-
tial research of rationale management, IBIS, is in planning theory and not in the
software engineering community. But, its research has migrated into software engi-
neering community. The first was n-dim, which is proposed by Subrahmanian et al.
[19] n-dim supports collaboration during software design.

Questions options and criteria is another rationale approach, which is proposed
by Mac Lean et al. [14]. According to Dutoit [5], the criterion of QOC could be
a goal or non-functional requirement. Based on this enhancement, he uses QOC
to support collaborative work in product management meetings. Later, QOC has
been used to support issue-based collaboration in globally distributed projects. The
rationale-based unified software engineering model (RUSE) [27] combines system
models, collaboration model and a model of the organization and its meta-model
is shown in Fig. 18.3. RUSE supports System Models based on the concepts
such as Feature, Document, Use Case, Class and Test Case. The
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Collaboration model of RUSE is a rhetorical model with classes Issue,
Option, Criterion and Assessment, which is called the issue model (same
as the QOC). An object of ModelElement, can be linked to many objects of
Issue, the rationale discussions are initiated. During the rationale discussions
stakeholders (distributed in a multi-site environment), propose options, criteria
and assessments collaboratively. All this information is organized and visualized
in the form of a justification matrix and resolutions (also called decisions) are
made. Each Resolution is linked to an ActionItem, which is assigned to a
Participant in the OrganizationalUnit. RUSE has been implemented in
Sysiphus [20].

A simplified version of OVM’s meta-model [17] is shown in Fig. 18.4. Variability
Model Element is an abstraction used for variability modeling, which has concrete
classes Variation Point and Variant. A Variation Point presents the reason
and location of variation and a Variant presents possibility of variation. A varia-
tion Point is associated with a variant using Variability Dependency, which
can be Optional, i.e., the variant could be selected during a product instantia-
tion or Mandatory, i.e., the variant must be selected during product instantiation.
Optional variability dependencies can be constrained using Alternative
Choice, which provides maximum and minimum number of variants that could
be instantiated for products.

All combinations of variation point and variant are constrained using
Constraint Dependency, which are Requires and Excludes. Requires
implies that the selection of a variation point/variant supports the selection other

Fig. 18.4 A simplified version of OVM meta-model
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variation point/variant. Excludes semantically mean that the selection of variation
point/variant contradicts the selection of other variation point/variant. Variability
modeling is related to system modeling as well. The many-to-many association
between System Model Element and Variability Model Element is
the traceability between system models and variability models. This is the concept
behind orthogonal variability modeling, which means that variability modeling is
done externally to system modeling.

Figure 18.5 shows an instance of the meta-model. Here Routing variation
point is associated with variants such as Traffic congestion routing,
Rerouting, Automatic routing and Multi-destination rout-
ing. The variability model is linked various requirements engineering models
as a part of System models like features, use case diagrams and
Requirements specification document.

18.4 Related Work

Traditional product line requirements engineering approaches does not address the
collaboration between stakeholders for variability management very well. For exam-
ple, existing product instantiation approaches based on configuration techniques
[10] focus on the part of the product that could be derived using dependency
analysis. However, there is less support for resolving variation points based on
the collaboration of domain and application engineers. Furthermore, conventional
variability modeling based on feature modeling [12], UML extensions [8] and
orthogonal variability modeling (OVM) [17] are concerned with representing vari-
ability dependencies and constraints. However, they do not focus on relating
collaboration models for variability management in requirements engineering.

Santos et al. raised that there is a tradeoff between domain and application
engineering during product instantiation [18]. Their approach focuses to support
domain and application engineering at the architecture level. In contrast, issue-
based variability modeling addresses domain and application engineering for the
complete software lifecycle based on a common meta-model as well as sup-
ports negotiations between participants during variability management. Berenbach
identifies collaboration problems between participants for requirements reviews;
between analysis and design as well as design and development teams; and change
management [1]. His contribution does not identify the conflicts of interests and
collaboration problems between domain and application engineering. Existing dis-
tributed requirements engineering approaches such as distributed requirements
negotiations based on EasyWinWin [9], awareness support in distributed software
development [2] and collaboration approach based on information models [15]
do not address the inconsistencies of artifacts between domain and application
engineering.

Deelstra et al. raise artifact redundancies as a problem in software prod-
uct lines [4]. According to them, lack of proper documentation could lead to
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redundancies. This contribution describes that lack of negotiations between domain
and application engineering could lead to redundancies as well.

Lago and van Vliet [21] addressed the capture of rationale for product line archi-
tecture. Their contribution focuses only on architectural design decisions but does
not focus on representing rationale for an orthogonal variability model, which could
be used for the whole development process.

18.5 Issue-Based Variability Modeling

A meta-model for issue-based variability modeling [23] is shown in Fig. 18.6, which
is on the combination of RUSE and OVM. The combination is based on several
“similarities” [26, 24] between rationale and variability management:

• Variation point and variant of variability are similar to issue and option of
rationale management.

• Similar to variability management, rationale management uses concepts like
variability dependencies and constraint dependencies.

• Rationale modeling is done orthogonal to system models, which is another
similarity with variability modeling.

Fig. 18.6 A meta-model for issue-based variability modeling
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Exploiting the similarities, variability meta-model is viewed as a special type of
collaboration model. Based on this new vision, issue-based collaboration could be
effectively used for variability management. In particular the collaboration aspects
during product instantiation, variability identification and product line evolution are
explained in the subsequent sub-sections.

18.5.1 Collaboration for Product Instantiation

In domain engineering, a variability model is viewed as a partial issue network
of variation points (issues) and variants (options). Therefore, the variability model
sits in the Collaboration artifacts with interdependencies to the System
models as shown in Fig. 18.7. Assessments and criteria are different for different
product instantiations and are then introduced late in application engineering, using
collaboration of distributed stakeholders. In particular, a variation point is resolved
for different products differently by using product specific criteria and assessments.
This is performed during product instantiation based on a justification matrix (refer
Table 18.1), which is constructed using the collaboration of stakeholders. In other
words, a justification matrix is the instantiation view of variability.

The concepts behind product instantiation are explained based on an exam-
ple in Fig. 18.7. Here, the Routing variation point (as initially represented in
Fig. 18.5) is instantiated for products P1, P2 and P3. The resolutions in these three
cases are the variant sets {Traffic congestion routing}, {Traffic
congestion routing, Automatic routing} and {Rerouting}. In
each case, the variability model is resolved differently, by introducing assessments
and criteria that are specific a product instantiation.

The instantiation of the Routing variation point for the product P2 is explained
using the justification matrix (refer Table 18.1). The issue of this variation point
is on the instantiation of the variations for a new product P2. The optional vari-
ants are the variants of Table 18.2. The product specific quality concerns that are
obtained from the application engineering teams (who interact with customers) are
the criteria. All stakeholders (from domain engineering team, application engineer-
ing team and customers) involved in product instantiation process and located in
different places give assessments. QOC supports several assessments such as +
(supports), ++ (supports strongly), 0 (neutral), – (hinters) and — (hinters strongly).
After collecting assessments, resolutions are made on the instantiation of variation
points. In case of conflicts on assessments, they can be resolved by starting issues on
assessments.

Unlike conventional variability modeling approaches, issue-based variability
modeling supports domain and application engineering using the same meta-model.
As variability meta-model is viewed as a type of a rhetorical model, issue-based
collaboration is supported for product instantiations. Based on these enhancements,
conflicts of interests during product instantiation are addressed.

In traditional issue modeling, that is, rationale models such as IBIS, QOC, and
DLR [22] as well as rationale management approaches proposed by Dutoit et al. [6]
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Table 18.1 Justification matrix, the instantiation view of variability

Variation Point: How to instantiate Routing management for P2?

Criteria Usability Availability Reliability Extensibility Maintainability Price

Option 1:
Traffic
congestion

++ + + + + +

Option 2:
Rerouting

++ – 0 0 0 ––

Option 3:
Automatic
routing

++ 0 + + + 0

Option 4:
Multi-
destination
routing

–– 0 – 0 + –

Resolution: Traffic congestion and Automatic routing are decided to be instantiated.

Table 18.2 Rationale discussions, supporting collaborative variability identification

1. Issue: What is the variability dependency of the Automatic routing?

2. Criteria 1. Usability 1. Availability 1. Price

3. Option1: Mandatory 2. ++ 2. –– 2. 0

4. Option2: Optional 3. 0 3. + 3. +

5. Resolution: Variability dependency of Automatic routing is decided to be
optional because of better assessments in price and availability.

and Gruenbacher and Seyff [9], an issue can have only one resolution. In particular,
Harward negotiation model focuses on reaching a single agreement based on the
mutual interests of the participants. Unlike the traditional issue modeling and nego-
tiation approaches, in the context of issue-based variability modeling, a variation
point can have several resolutions. Each of these resolutions is the instantiation of
the variation point for a specific product.

18.5.2 Collaboration for Variability Identification and Product
Line Evolution

Rationale discussions could be used for variability identification as well.
Discussions are triggered using issues. Options are possible variations (e.g., manda-
tory, optional or alternative). The distributed stakeholders propose criteria and their
arguments in the form of assessments.

Based on the issue-based collaboration, justification matrices are built and deci-
sions are made on the variability identification. This concept of negotiations for
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Table 18.3 Updated justification matrix for evolution of variability

1. Issue: What is the variability dependency of the Automatic routing?

2. Criteria 1. Usability 1. Availability_1 1. Price_1

3. Option1: Mandatory 2. ++ 2. + 2. +

4. Option2: Optional 3. 0 3. – 3. 0

5. Resolution: Variability dependency of Automatic routing is decided to be mandatory
because of better assessments in usability, availability and price.

variability identification, could be used during reengineering based variability iden-
tification as well as during product line maintenance where the variability is added
incrementally in order to address the communication problems during variability
identification and product line evolution. For example, Table 18.2 is an example
of justification matrix for variability identification of the variability dependency of
Automatic routing. According to issue-based variability modeling, an issue
can require several issues (refer meta-model of Fig. 18.6). This means issue of
variation point in domain engineering (why do we have a variation point?) is for-
mally linked to issues of variability dependencies and constraints, i.e., justification
matrices of variability identification (e.g., Table 18.3). This makes up the knowl-
edge view of variability (Fig. 18.8). The enriched representation of variability also
improves the collaboration between distributed stakeholders, by representing and
sharing rationale information between distributed stakeholders.

The justification matrices support evolution by a simple update. For example,
let us suppose over time the Availability and Price criteria have changed
to Availability_1 and Price_1. By updating the state of the justification
matrix (from Table 18.2 to Table 18.3) i.e., redoing the assessments and reevaluating
the resolution, we can cope with the evolution of variations.

From this example, we can notice that capturing variability rationale can
make product lines evolvable. In case the rationale information (as represented in
Table 18.3) is not captured, the variability identification has to be performed again,
which is expensive than updating the state of the justification matrices. Furthermore,
the relation between variability and criteria is not explicit, in case the variability
rationale is not captured.

18.6 Empirical Evaluation

Issue-based variability modeling has been implemented as a plug-in for Sysiphus
and have been empirically evaluated based on a series of studies.

The first one is an experimental survey with professionals. In this study 34 pro-
fessionals were sampled into an experimental group (with 19 professionals) and
a control group with (15 professionals) based on stratified random sampling. The
experimental group was trained in issue-based variability modeling and the control
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Fig. 18.9 Results from the comparative evaluation of issue-based variability modeling

group used OVM. After a training section, both groups were asked to fill a question-
naire with several open questions. Each question is characterized with a measurable
parameter. The data collected is plotted on a histogram (shown in Fig. 18.9).

From Fig. 18.9, the methodology has better qualities than OVM with respect to
issue-based communication, instantiation support, easiness in instantiation, evolu-
tion support as well as representation qualities like expressiveness and explicitness.
Based on this we can derive a conclusion that issue-based variability modeling sup-
ports better issue-based collaboration during variability management activities than
the conventional variability modeling techniques. A detailed version of the study is
available at [25].

Issue-based variability modeling was also evaluated in a series of case studies
with muti-case design. The study was performed in a sample of 257 students from
TU Munich. In the study, students were taught issue-based variability modeling in
a half-day training section and were sampled into groups of various sizes (2–22).
Each group performed the variability management activities based on the issue-
based collaboration. The data collection was done based on direct observation.

In all the cases of the case studies, the participants were able to model
variations, instantiate and change variations as well as capture the rationale
behind them. Furthermore, when students were asked to assess the difficulty of
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Table 18.4 Results of multiple-regression

1. Independent
Variable

1. Dependent
Variable

1. N 1. Correlation
coefficient

1. p- Value 1. Reject H0

2. Average
motivation of
group

2. Quality of
instantiation

2. 42 2. 0.4295 2. 0.0016 2. Yes

3. Group size 3. –0.0423 3. 0.0695 3. No

issue-based variability modeling on the scale of Very easy, Easy, Fair,
Difficult, Very difficult and Don’t know the answer, 87.75%
of the 258 participants answered with Fair and above. From this, we conclude that
issue-based collaboration supported by the methodology is easy to use even in teams
with only elementary software engineering knowledge.

We planned to explore the effect of Group size and Average moti-
vation of group on Quality of instantiation. Therefore, we per-
formed multiple regression with Group size and Average motivation
of group as independent variables and Quality of instantiation as
dependent variable (see Table 18.4). There was a possibility that Average
motivation of group was dependent on Group size. In order to check
this, we performed linear regression with Group size as independent variable
and Average motivation of group as dependent variable as shown in
Table 18.5. The p-value for linear regression between Group size and Average
motivation of group accepts the null hypothesis (H0), which implies that
Group size is independent of Average motivation of group. This
enabled us to analyze the results of the multiple regression analysis. From the
results (see Table 18.5), the p-value between Group size and Quality of
instantiation accepts the null hypothesis.

The correlation coefficient is less (|–0.0695| << 1). So, in the case studies
Quality of instantiation is independent of Group size. This gives
evidence that the quality of instantiation of issue based variability modeling is
independent of Group size, where 2 < Group size < 22.

Table 18.5 Results of linear regression

1. Independent
variable

1. Dependent
variable

1. N 1. Correlation
coefficient

1. p-Value 1. Reject H0

2. Group size 2. Average
motivation of
group

2. 42 2. 0.2393 2. 0.1269 2. No

3. Quality of
rationale

3. Reuse of
rationale

3. 55 3. 0.722 3. 0.0000 3. Yes
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18.7 Conclusion

Separation of concerns between domain and application engineering could lead to
collaboration problems. To address the collaboration problems, this chapter pro-
poses an approach called issue-based variability modeling, by extending traditional
variability management based on rationale management. In particular, the meta-
model of orthogonal variability modeling is extended with the meta-model of
rationale-based unified software engineering model. Issue-based variability mod-
eling supports variability modeling in domain engineering using a partial issue
network comprising of issues and options. In application engineering the partial
issue-network is resolved during product instantiation, thus enabling variabil-
ity modeling and product instantiation using the same meta-model. Furthermore,
the resolutions are done differently for different products using product specific
assessments and criteria. Issue-based variability modeling also enables rationale
representation for variability. This supports collaboration for product line evolution.

Issue-based variability modeling has been implemented as a plug-in for an exist-
ing RUSE implementation called Sysiphus and was evaluated empirically using
several empirical studies. The results show quantitatively that issue-based vari-
ability modeling is effective than conventional variability modeling techniques for
supporting issue-based collaboration. Further, the issue-based collaboration was
tested up to 22 participants.
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Chapter 19
Collaborative Software Engineering: Challenges
and Prospects

Ivan Mistrík, John Grundy, André van der Hoek, and Jim Whitehead

Abstract Much work is presently ongoing in collaborative software engineering
research. This work is beginning to make serious inroads into our ability to more
effectively practice collaborative software engineering, with best practices, pro-
cesses, tools, metrics, and other techniques becoming available for day-to-day use.
However, we have not yet reached the point where the practice of collaborative soft-
ware engineering is routine, without surprises, and generally as optimal as possible.
This chapter summarizes the main findings of this book, draws some conclusions on
these findings and looks at the prospects for software engineers in dealing with the
challenges of collaborative software development. The chapter ends with prospects
for collaborative software engineering.

19.1 Introduction

19.1.1 What We Know About Collaborative Software Engineering

Software engineering is naturally a team activity. Software engineers need to collab-
orate effectively in order to deliver a project on time, on budget and to an appropriate
quality level [2]. Traditional software engineering projects have used primarily top-
down approaches to team organization and project management, a homogeneous
software process and toolset, are co-located enabling regular and proactive face-to-
face meetings, and team members usually have the same language and work culture
[2, 3, 8].

These projects still face daunting challenges around collaboration. Teams have
to be formed and work appropriately delegated, tracked and managed. Specialists
within teams or whole specialist teams need to exchange knowledge among them-
selves and across team boundaries. Evolving requirements and customer needs
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require processes and collaboration support to enable these to be effectively man-
aged [5, 26]. Traditional software tools usually provided limited collaboration
support features. A toolset needs mechanisms to support collaboration (e.g., shared
workspaces, file repositories, differencing and merging support, configuration, test-
ing, design, process management), communication (email, messages, annotations,
video/audio), and co-ordination (locking, versioning, hand-over, auditing) [20, 6].
Many studies of teams, processes, tools and real-world projects [5, 19, 27] have
shown the value of appropriate process, project management, technique and tool
selection and usage to enable effective and efficient collaboration.

Several recent trends in software engineering have greatly increased the chal-
lenges around collaboration on software projects. Agile processes enabling rapid
requirements evolution and emergent architectures and documentation demand
vastly different team organization, project management and communication strate-
gies [19, 18, 8, 2]. Virtual software organizations with distributed teams, contrac-
tual obligations between constituent organizations, and highly distributed teams
demand greater support for knowledge sharing, co-ordination and collaboration
[13]. Communication may be complicated by time zone, culture and even lan-
guage differences. Open source software projects exhibit similar challenges but are
often characterized by a very wide range of participants, organizations and contri-
butions from teams and individuals with very different motivations and needs. A
trend to “global software development” similarly leads us to teams that span coun-
try, language, culture, organization, technical tool platform and ultimately software
process [18].

In order to address many of these known issues – and discover new issues – in
collaborative software engineering, a large number of research and practice projects
are taking place. New software processes are being studied to gauge their impact
on distributed software projects including open source, global software develop-
ment and outsourcing projects [2, 8, 17, 24]. These aim to help organizations better
understand such contexts for collaboration and formulate the most effective and
complementary teams, processes, toolsets and techniques. Communication patterns
in open source projects, requirements engineering, coding and testing projects, and
projects in agile process, open source and virtual software development organiza-
tions, are being analyzed to enhance understanding of needs in these domains [24, 5,
2]. Many face challenges of distance including language, culture and work practice,
as well as traditional communication and knowledge management issues. A wide
range of new tool support approaches are being developed, deployed and evaluated
in various domains. These include but are not limited to improved awareness sup-
port, software analysis, configuration management, co-ordination, communication
and knowledge management [6, 9, 11, 19].

Sharing knowledge about software engineering projects continues to be a major
challenge and best practices for knowledge management in many areas are still
unclear [9, 11, 26]. Studies have shown benefits to collaboration of improved
knowledge repositories and management practices in requirements, architecture,
project management, and software process domains. Communicating rationale
about decisions is critical at all levels of software engineering [12, 15, 16].
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19.1.2 Objectives of This Chapter

This book makes a case for CoSE as a crucial part of research in software engineer-
ing (SE) and as an essential part of future software development and maintenance.
In previous chapters, the book has explained what CoSE is, what its potential value
is for SE, what its research challenges are and how these challenges might be met.
The intention of this concluding chapter is to provide a summary of the previous
chapters and a look at prospects meeting the challenges of future CoSE practice.

Section 19.1 summarizes a current status of CoSE. Section 19.2 presents a sum-
mary of the book. Section 19.3 reviews some of the present challenges facing
collaborative software development and prospects for meeting them.

19.2 Summary of the Book

Software engineering collaboration has multiple goals and means spanning the
entire lifecycle of development [27]. Chapters in this book are reporting on advances
in achieving some of these goals by presenting their particular means and specific
solutions.

Chapter 1 of the book introduces the concepts and tools for CoSE. Part I con-
tains chapters that characterize CoSE. Part II contains chapters that examine various
techniques and tool support issues in CoSE. Part III contains chapters addressing
organizational issues in CoSE. Part IV contains chapters looking at a variety of
related issues in CoSE. Finally, Chapter 19 concludes the book with a summary of
the book, current challenges and prospects in CoSE.

As many organizations have discovered to their cost, implementing a global soft-
ware engineering strategy is a complex and difficult task. Extensive research in this
area has identified that this is due to a number of factors which include the nature
and impact of geographical, temporal, cultural and linguistic distance. In addition,
whether undertaken in a collocated or geographically distributed environment, team
based software development is not simply a technical activity. It also has important
human, social and cultural implications which need to be specifically addressed.
While the technical aspects of software development cannot be underestimated, nei-
ther can the importance of establishing and facilitating the effective operation of
these teams [18].

Requirements engineering (RE) is an area filled with challenges of a non-
technical nature. RE involves activities such as negotiation, analysis and require-
ments management in subsequent phases of development. RE requires communica-
tion from the elicitation phase down to the analysis, implementation and test phases.
As such, it involves collaboration among large, often geographically distributed
cross-functional teams comprised of requirements analysts, software architects,
developers, and testers. This collaboration is driven by coordination needs in soft-
ware development and relies on communication and awareness. Coordination is a
critical aspect in every activity related to a requirement’s analysis, implementation
or testing. Effective coordination, knowledge management and information sharing
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among team members with diverse organizational and functional backgrounds is
crucial. Collaboration across geographical distance (i.e., different time zones) and
socio-cultural distance (i.e., language and culture) creates additional challenges in
project members’ communication and awareness in the development project [5].

Collaboration can be viewed as the most important lever for achieving high qual-
ity, efficient and effective software engineering practices and results in virtually
any software developing organization. Although collaboration has been compli-
cated, several trends increase the complexity of managing dependencies between
software development teams and organizations. These trends include the increasing
adoption of software product lines, the globalization of software engineering and
the increasing use of and reliance on 3rd party developers in the context of soft-
ware ecosystems. The trends share as a common characteristic that the coupling
between the software assets as well as between the organizational units is increased.
Consequently, decoupling mechanisms need to be introduced to address the increase
in coupling [3].

Agile software development is a group of software engineering methodologies,
e.g., eXtreme programming (XP), Scrum, Crystal, that became popular in the early
2000s. Agile advocates claim to increase overall software developer productivity,
deliver working software on time, and minimise the risk of failure in software
projects. While its effectiveness and applicability remain uncertain, it is attracting
increasing interest from the software engineering community. The Agile Manifesto
emphasises collaboration and interactions, and the reality of XP software develop-
ment offers evidence that this emphasis is borne out in practice. Observing practice
makes it clear to the researcher that the work of an XP team visibly and continually
involves collaboration and communication – and that collaboration and communi-
cation are part of the technical business of creating working software. There are two
key XP practices which illustrate the relationship between the social and technical:
pairing and customer collaboration [19].

Ontology captures a shared understanding of a problem domain and is usually
specified in a logical language by describing concepts, relationships and additional
logical axioms. Knowledge included in ontology is designed for both humans and
machines. It can be integrated in development infrastructures and in developed soft-
ware to support various software project activities. Although ontologies have been
around for many years, several factors promote their increasing adoption. First, with
a number of W3C standards such as RDF and OWL issued in recent times, tools
and methodologies for creating and managing ontologies have matured. Second, the
success of the Web enables developers to collaborate in a richer and more dynamic
way, instead of working in de facto isolation. Both factors contribute to a slow but
growing number of semantic approaches addressing CSD issues. Applications of
ontologies in software development can be manifold and so the resulting ontologies
will differ in expressivity, scope and purpose [9].

A variety of novel tools have been created to allow software developers to col-
laborate with each other. There are many approaches how to classify them. One
approach classifies them on whether they try to (a) make software developers feel
they are co-located, or (b) provide features not found in co-located collaboration.
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The result is an overview that relates concepts not linked together earlier, which
include not only research tools but also studies that motivate/evaluate them. Each of
the surveyed works is described by showing how it builds on or overcomes prob-
lems of other research addressed in this chapter. By focusing only on the differences
among these works, the chapter covers a large variety of concepts, from over fifty
papers. It is targeted mainly at the practitioner familiar with the state of the art,
rather than the researcher working on improving current practices. Nonetheless, the
interrelationships among the referenced works should be of interest to everyone.
In particular, a new researcher in this area should be able to find holes in existing
designs and evaluations [6].

In software development the need for coordination among developers gener-
ally arises because of the underlying technical dependencies among work artifacts;
as well as the structure of the development process. Researchers in the software
engineering as well as computer-supported cooperative work communities have rec-
ognized this problem and created a host of tools to improve team coordination.
However, evaluating the usability and usefulness of such tools has proven to be
extremely difficult. One possibility is to focus on different evaluation approaches
that are applicable for coordination tools. There exists a diverse range of approaches
to evaluating collaborative tools. Adopting a combination of empirical evaluation
approaches is perceived as means to meet the challenges typically encountered. The
diversity of existing tools and evaluation approaches reflect the many challenges of
facilitating coordination in teams. Further, several evaluation frameworks have been
proposed to support software tool evaluation [20].

Configuration Management is a discipline responsible for controlling the evolu-
tion of products. Since late 1960s, configuration management is considered to be
one of the core supporting process to software development and a research field of
software engineering. According to IEEE, there are five main functions of configura-
tion management: configuration identification, configuration control, configuration
status accounting, configuration evaluations and reviews, and release management
and delivery. However, these five functions are traditionally supported by three main
subsystems: issue tracking system, version control system, and build management
system. Because the primary focus of configuration management is keeping the
consistency of products, it is concerned with how people interact to develop and
maintain these products. The complexity of software products led to the need of
geographically distributed teams composed of a large number of developers with
different background. These teams collaborate during software engineering activ-
ities, and configuration management can be considered as an enabling technology
to allow this collaboration. Collaboration in the context of software engineering
encloses different aspects, such as: implicit and explicit communication among
developers, awareness regarding other developers’ actions, coordination of devel-
opment tasks to avoid rework and to achieve the project goals, keeping a shared
memory with previous development actions history, and providing a shared space
where the work made by a developer is available to other developers [15].

The advantages of using explicit software architecture include early interaction
with stakeholders, its basis for establishing work breakdown structure and early
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assessment of quality attributes. Although considerable progress has been made,
we still lack techniques for capturing, representing, and maintaining knowledge
about software architectures. While much attention has been given to document-
ing architectural solutions, the rationale for these solutions often remains implicit
and is often exchanged in interpersonal, informal communication. The incomplete
representation of the needed architectural knowledge leads to several problems that
are generally recognized in any software engineering project, and that become just
worse in distributed and global software development. When software engineering
projects are distributed or global, the problems above are aggravated. Knowledge
transfer is a communication process requiring strict interaction and agile informa-
tion exchange. In local software development, it is already difficult to rationalize the
type and amount of knowledge we need to exchange. If in addition exchanges occur
remotely and via a technological infrastructure, we have to make this knowledge
explicit, and we need to identify agile means to render this process as dynamic and
powerful as possible [11].

Software development is in essence information-intensive collaborative knowl-
edge activity. It is about using information, generating information, and making
information artifacts. The wide acceptance of agile processes and the success of
many open source projects provide strong evidence that human aspects do matter in
software development; cognitive and social processes play essential roles in success-
ful software projects in which individuals’ creative thinking in using and generating
information are nurtured. There is an argument that software engineering environ-
ments must be designed to foster such individuals’ creative knowledge processes,
and that collaboration must be supported in the context of individuals’ development
activities. Collaborative software development environments should be designed
to facilitate and nurture individuals’ creative knowledge processes. Collaboration
takes place with or without explicit communication. On the one hand, software
developers regularly engage in collaboration through artifacts without explicit com-
munication (e.g., by writing comments in code to be read by others). On the other
hand, explicit communication becomes necessary when developers must ask their
peers for information that is otherwise not obtainable. Existing studies have pro-
vided ample evidence that both collocated and distributed software development
teams frequently engage in communication to acquire necessary information from
peer developers [16].

A common feature of many software analysis tools is that they focus on just
a particular kind of analysis to produce the results wanted. If different analyses
are required, an engineer needs to run several tools, each one specialized on a
particular aspect, ranging from pure source code analysis, duplication analysis, co-
change analysis, bug prediction, to bug fixing patterns and visualization. All these
techniques have their own explicit or implicit meta-model which dictates how to
represent the input and the output data. Thus the sharing of information between
tools is only possible by means of a cumbersome export towards files complying
with a specified exchange format. Also, if there are several analyses of the same
kind (e.g., code duplication analysis) there is hardly any way to compare the results
or integrate them other than manual investigation. Tool interoperability is hampered
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even more by their stand-alone nature as well as their platform and language depen-
dence. As a consequence, distributed and collaborative software analysis scenarios
are severely limited. The combination and integration of different software analysis
tools is a challenging problem when we need to gain a deeper insight into a soft-
ware system’s evolution. For every required analysis a specialized tool, with its own
explicit or implicit meta-model dictating how to represent the input and output, has
to be installed, configured and executed. Even if different analyses of the same kind
exist, the only way to compare them is to do it manually [8].

Communication and collaboration among team members are key success fac-
tors for large, complex software projects. In addition to industry, examples of such
projects can be found in the Open Source Software (OSS) community, for exam-
ple, the Mozilla, Apache, Eclipse projects. OSS projects are of particular interest
for communication and collaboration research because their developers rarely or
never meet face-to-face. Findings of previous research showed that OSS developers
coordinate their work almost exclusively by three information spaces: the imple-
mentation space, the documentation space, and the discussion space. Typically, in
OSS projects a versioning system, such as the concurrent versions system, provides
the backend of the implementation space. It keeps track of changes made to pro-
jected related files and corresponding versions. The World Wide Web is used as
the primary documentation space. Because of the distributed and informal nature of
OSS projects, discussions between project members, project associates, and users
are done and tracked in mailing lists and bug reporting systems. This results in a
representative data set that enables communication and collaboration analysis [17].

For the past few years, Siemens has been experimenting with software develop-
ment processes and practices for globally distributed projects using student-based
development teams located at different universities around the world. The students
who make up the Global Studio Project (GSP) simulate an industrial software devel-
opment project using common practices for collaboration among distributed sites.
Experiences with this project have been reported in a number of papers, and it has
been documented as a case study (GSP 2005). The motivation for studying multi-
site software development processes is driven by the business needs. A number of
questions were raised, and they are still being investigated [2].

Free/open source software development (FOSSD) is a way for building, deploy-
ing, and sustaining large software systems on a global basis, and differs in many
interesting ways from the principles and practices traditionally advocated for
software engineering. Hundreds of FOSS systems are now in use by thousands
to millions of end-users, and some of these FOSS systems entail hundreds-of-
thousands to millions of lines of source code. So what’s going on here, and how are
collaborative FOSSD processes used to build and sustain these projects, and how
might differences with SE be employed to explain what’s going on with FOSSD?
One of the more significant features of FOSSD is the formation and enactment of
collaborative software development practices and processes performed by loosely
coordinated software developers and contributors. These people may volunteer their
time and skill to such effort, and may only work at their personal discretion rather
than as assigned and scheduled. Further, FOSS developers are generally expected
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(or prefer) to provide their own computing resources (e.g., laptop computers on the
go, or desktop computers at home), and bring their own software tools with them.
FOSS developers often work on global software projects that do not typically have a
corporate owner or management staff to organize, direct, monitor, and improve the
software development processes being put into practice on such projects [24].

The outsourcing of software development implies that an organization wholly
or partially contracts out software development to another organisation. If the
partner organization is located abroad, this might be termed “an offshore out-
sourcing of software development”. If the development takes place in physically
far-flung locations, it is called “global software development” or “distributed soft-
ware development”. Whether domestic or foreign, outsourcing can be an uncertain
undertaking. Nonetheless many companies use offshore outsourcing to reduce time-
to-market, to tap global resources, to profit from round-the-clock development, and
to reduce costs. The goal of “offshore outsourcing software development” is to
uphold competitiveness in the global market. This goal should be promoted by
the concise and purposeful employment of every resource – information technol-
ogy, talent and competence to assure a thriving offshore outsourcing project. All of
which helps the company maintain ongoing global penetration. However, global
distribution of the development raises a number of knotty questions concerning
accomplishment and implementation. Often there is a huge disparity between targets
and the results attained [13].

According to a recent paradigm shift in the field of software architecture, the
product of the architecting process is no longer only the models in the various
architecture views, but the broader notion of Architectural Knowledge (AK): the
architecture design as well as the design decisions, rationale, assumptions, con-
text, and other factors that together determine architecture solutions. Architectural
(design) decisions are an important type of AK, as they form the basis underly-
ing software architecture. Other types of AK include concepts from architectural
design (e.g., components, connectors), requirements engineering (e.g., risks, con-
cerns, requirements), people (e.g., stakeholders, organization structures, roles), and
the development process (e.g., activities). The entire set of AK needs to be itera-
tively produced, shared, and consumed during the whole architecture lifecycle by
a number of different stakeholders as effectively as possible. The stakeholders in
architecture may belong to the same or different organization and include roles such
as: architects, requirements engineers, developers, maintainers, testers, end users,
and managers etc. Each of the stakeholders has his/her own area of expertise and a
set of concerns in a system being developed, maintained or evolved. The architect
needs to facilitate the collaboration between the stakeholders, provide AK through
a common language for communication and negotiation, and eventually make the
necessary design decisions and trade-offs. However, in practice, there are several
issues that hinder the effective stakeholder collaboration during the architecting pro-
cess, which diminishes the quality of the resulting product. One of these problems is
the lack of integration of the various architectural activities and their corresponding
artifacts across the architecture lifecycle. The different stakeholders typically have
different backgrounds, perform discrete architectural activities in a rather isolated
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manner, and use their own AK domain models and suite of preferred tools. The
result is a mosaic of activities and artifacts rather than a uniform process and a solid
product [12].

Software product line engineering enables customization of products for vari-
ous market-segments from an abstraction called a product line platform. The set of
products are developed from a product line platform is termed as a software prod-
uct line. Software product line engineering provides several advantages based on
reuse; quicker time-to market, improved cost savings and defect rates. Using soft-
ware product lines several companies have recorded success stories. A product line
platform is made up of several assets. An asset could be a system model element
(artifacts that are used in software development such as use cases, classes, test cases
etc) or a variability model element, an abstraction for variability. Variability is intro-
duced in a product line platform as an abstraction to allow customization and reuse
of artifacts to address the needs of different market segments. Variability manage-
ment involves several activities. Variability identification covers identification and
representation of variability; product instantiation which deals with the resolution
of variability for individual products of a product line; and variability evolution,
which addresses the change of variability itself. Product line evolution includes the
evolution of system model elements and variability model elements. Software prod-
uct line engineering involves two activities, domain engineering and application
engineering. Domain engineering is an activity in which assets of a product line
platform are identified, implemented and maintained. Another activity, application
engineering is responsible for instantiating products from a product line platform.
In product line requirements engineering, the activities of variability management
are to be performed based on collaboration of domain and application engineering.
Therefore, supporting collaboration between domain and application engineering is
critical. The communication problem between conflicting views exists from the level
of single system requirements engineering. To address the collaboration between
domain and application engineering, in this contribution, variability management
is extended using rationale management in order to enable issue-based collabora-
tion between domain and application engineers. The collaboration supported by a
rhetorical model is termed as issue-based collaboration. Rationale is defined as the
reasoning that leads to a system model. Rationale management is viewed as a special
branch of collaborative software engineering [26].

19.3 Today’s Challenges

As should be clear from the collected chapters in this book, much work is presently
ongoing in collaborative software engineering research, work of a broad variety
and often great amount of depth. This work is beginning to make serious inroads
into our ability to more effectively practice collaborative software engineering, with
best practices, processes, tools, metrics, and other techniques becoming available
for day-to-day use. However, we have not yet reached the point where the practice
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of collaborative software engineering is routine, without surprises, and generally
as optimal as possible. Partly, this is unavoidable, as the fundamental tensions dis-
cussed in Section 1.7 make achieving the optimum very difficult, if not impossible.
At the same time, we should acknowledge that, while the research has advanced
greatly over the past decade, many difficult challenges still exist when it comes to
understanding and practicing collaborative software engineering. In the below, we
highlight several key such challenges that we believe are among the most pressing
and at the same time most promising to address at this moment in time.

Building a theoretical understanding of COSE. In any research field, one of the
keys to advancement is to build an understanding of its underlying truths and phe-
nomena. So it is in software engineering, and in the case of this book, collaborative
software engineering. We need to build an understanding of what factors influence
collaborative work and how those factors together determine the overall effective-
ness of a given collaborative effort. This not only requires identifying each of the
factors at play, but also how those factors influence one another. As one example,
the role of awareness has been recognized for some time now [6]. As another exam-
ple, trust has recently come forward as a crucial factor in distributed projects [1].
While each of these factors must be studied in depth, they cannot be studied in
isolation; they are closely interrelated and must be understood as a collective. The
notion of congruence is appealing in this regard, having recently been proposed as
foundational and theoretical approach to contextualizing coordination needs versus
coordination capabilities [4, 21]. It remains to be seen whether all necessary data
can be gathered, but the concept represents an intriguing look at collaborative work.

Designing assessment methods for specific situations. Having an overall under-
standing of the factors at work in collaborative software engineering is not sufficient.
We should also be able to assess specific situations and circumstances in which
collaborative individuals, teams, and organizations find themselves. Are there any
coordination problems presently? Are there latent issues that may lead to future
coordination problems? If there are issues, what are some potential solutions to
them? How will those solutions affect other collaborative factors in the organi-
zation? These are key questions for which we do not have good answers at this
time. Social-technical network analysis with respect to the presence or absence of
communication with respect to pieces of code that depend on one another is an
example of a promising direction of research in this regard [22], though even there
it is still unproven whether it is actually the presence or absence of communication
that indicates good collaboration. Advocates of “presence” argue that such com-
munication indicates that people talk and presumably resolve issues. Advocates of
“absence” argue that if every technical dependency had to give rise to communica-
tion between developers, excess communication would take place. Moreover, they
argue that other strategies, such as properly partitioning and scheduling the work,
should actually prevent communication from being needed. At this time, there is no
clear answer, other than that both sides of the argument are right at different times,
but that we have no way of distinguishing yet when those times are. Similarly open-
ended question pertain to assessing given situations with respect to a whole host of
different factors – the field has not matured sufficiently yet in this regard.
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Implementing tool support. Many recent advances in collaborative software
engineering have to do with the creation of new tools in support of particularly
collaborative practices. A host of tools has emerged, with various purposes behind
them. Mylyn focuses on providing task context [10], CollabVS [7] and Palantír [23]
on mitigating risks of parallel work, and Expertise Browser [14] on finding experts
on particular areas of the code base. Many others exist, as the survey by Dewan in
Chapter 7 shows [6]. Some tools are designed to help the researchers themselves, in
efforts to understand collaborative practices and situations. Social-technical network
analysis tools such as Ariadne [25], for instance, serve this purpose. But today’s
tools have only brought us “so far”; as new situations are investigated and hypothe-
ses formed, new tools can be developed. One could think of tools that explicitly
represent and work with trust, tools that prevent to just direct conflicts but also indi-
rect conflicts, tools that better help identify necessary communications across team
or organizational boundaries, awareness tools that cross phases of the life cycle, and
so on. Much work remains to be done.

Beyond these three overarching categories, several challenges of “smaller” scale
are presently at the forefront of the community. That is, within and across the above
three categories in-depth investigations are needed regarding a variety of subjects.
We mention such questions as: How could closed-source development benefit from
open-source practices, and vice versa? How can knowledge better be preserved as
it arises from and spreads to various teams in a collaborative environment? How
can wikis be streamlined to more effectively support collaborative work? How can
cultural barriers be bridged more smoothly? What other forms of awareness can be
supported with tools? How can we better predict future coordination needs, and bot-
tlenecks? Answers to these and other questions like it stand to improve the practice
of collaborative software engineering, but will require a broad and deep research
effort for years to come.

19.4 Prospects

This book has emphasized how collaboration is an integral part of software engi-
neering project work, making it seem that the problems of collaboration are eternal,
a form of status quo. This couldn’t be further from the truth, as software engineering
collaboration is a clear example of tangible forward progress. Technologies such as
wikis, software forges, discussion lists, web sites, social network sites, email, instant
messaging, mobile phones (and many others) combined with improved conceptual
understanding of the collaborative goals and practice have created a golden age for
project collaboration.

Consider the difference between collaboration practice today and 20 years ago,
just prior to the widespread adoption of the Internet. Today, open source projects
routinely gather project participants from around the world, use project forges for
project collaboration (including mailing lists, SCM repositories, bug tracking sys-
tems, project web pages, etc.) and gather bug reports from users of their software.
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Twenty years ago there were open source projects, but it was very challenging to
create the collaboration infrastructure needed (you typically needed to be in an aca-
demic environment), the number of people on the Internet was much smaller than
today, and knowledge of how to use tools such as CVS was thinly spread.

Today, commercial projects often involve multiple groups, located at different
geographic sites. Collaboration technologies, combined with an improving con-
ceptual understanding of how to manage and foster collaboration across wide
geographic and cultural distance make these wide-area collaborations work, with
comparatively little impact on project speed and quality. Twenty years ago, such
wide-area collaboration was rare, modularized at the level of system-components,
and extremely expensive. It is unclear whether it was even possible to perform the
kind of fine-grain global software engineering that is commonplace today.

Today, a project web site is a common tool for collecting project documents
such as requirements, designs, test plans, user interface sketches, and so on. While
simple, such web sites are a huge improvement in recording and finding project
knowledge over 20 years ago, when finding and copying project documents was
major challenge.

It is commonplace today for software to report back to the manufacturer when
it experiences a crash. Web sites with end-user submitted questions, workarounds
for problems, and suggestions for future features are now typical. Even the most
obscure discussion forum can potentially be critically useful if it holds discussion
relevant to a specific user’s problem. Twenty years ago, users were able to exchange
this type of knowledge via Netnews, if they were lucky enough to be on the Internet.
Computer user groups, software magazines, and software retail outlets also helped,
but the knowledge could not be easily stored and searched.

Finally, today computer games such as Little Big Planet allow players to create
and contribute new game levels for others to play. . . over one million of them so
far. This type of user generated content was just not feasible before the internet,
combined with low-cost storage and servers.

Dramatic as the past 20 years have been, the future of collaboration in software
engineering promises to be even brighter. For starters, the widespread integration
of the internet into most facets of life is just beginning. Mobile internet access,
now very expensive, will become less expensive over time, promoting the spread
of networks out of the first world, making it possible to tap the potential of many
billions more people. There are many smart people in the world with time on their
hands. Some simply wish to find some way they can make a positive contribution,
and thereby generate meaning and create community in their lives.

Collaboration tools will become more sophisticated. Following the trend of desk-
top applications migrating to the web, software development environments will
increasingly be web-based, allowing all project documents to live in the cloud.
This, in turn, makes it possible to add social network site capabilities to projects,
which should make it easier to build collaborations. With project data in the cloud,
it should become easier to combine together various types of software project mod-
els, thereby finding errors and inconsistencies, but also recording richer networks of
interrelationships among the artifacts. Awareness of the work of others should also
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be easier in web-based environments, where all work, down to the keystroke level,
is available.

As the amount of code available on the web continues to grow, so does the
potential for finding existing source code to use in an existing project. Once key
issues in the formation of searches and adoption of found code are resolved, this
kind of anonymous collaboration via code repositories could result in substantial
improvement in coding productivity.

During the first phase of internet adoption (c. 1990–2010) advances in soft-
ware project collaboration generally were the result of being able to communicate
cheaply with people at a distance, and having a universal viewer for documents (the
web). Future advances will be more sophisticated, explicitly modeling interpersonal
and project relationships, providing deeper integration of software project data,
leveraging deeper understanding of code structure and meaning, and combining
collaboration services in unique configurations.

The many chapters in this volume speak to the broad array of potential futures in
software engineering collaboration. Though not all of these ideas will be widely
adopted, together they make a compelling case that the future of collaboration
in software engineering is bright, with much potential for further unleashing the
potential of software engineers working in teams.
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